Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cosmic connections: Imperial scientist locates the origin of cosmic dust

03.09.2008
The origin of the microscopic meteorites that make up cosmic dust has been revealed for the first time in new research out Monday (1 September 2008).

The research, published in the journal Geology, shows that some of the cosmic dust falling to Earth comes from an ancient asteroid belt between Jupiter and Mars. This research improves our knowledge of the solar system, and could provide a new and inexpensive method for understanding space.

Cosmic dust particles, originally from asteroids and comets, are minute pieces of pulverised rock. They measure up to a tenth of a millimetre in size and shroud the solar system in a thin cloud. Studying them is important because their mineral content records the conditions under which asteroids and comets were formed over four and a half billion years ago and provides an insight into the earliest history of our solar system.

The study’s author, Dr Mathew Genge, from Imperial College London’s Department of Earth Science and Engineering, has trekked across the globe collecting cosmic dust. He says:

“There are hundreds of billions of extraterrestrial dust particles falling though our skies. This abundant resource is important since these tiny pieces of rock allow us to study distant objects in our solar system without the multi-billion dollar price tag of expensive missions.”

The origin of the cosmic dust that lands on Earth has always been unclear. Scientists previously thought that analysing the chemical and mineral content of individual dust particles was the key to tracing their origin. But this study suggests that a comparison of multiple particles gives better results.

To pinpoint the cosmic dust’s origin, Dr Genge analysed more than 600 particles, painstakingly cataloguing their chemical and mineral content and reassembling them like a complex jigsaw. Dr Genge comments:

“I’ve been studying these particles for quite a while and had all the pieces of the puzzle, but had been trying to figure out the particles one by one. It was only when I took a step back and looked at the minerals and properties of hundreds of particles that it was obvious where they came from. It was like turning over the envelope and finding the return address on the back.”

Dr Genge found that the cosmic dust comes from a family of ancient space rocks called Koronis asteroids, which includes 243 Ida, widely photographed by the NASA Galileo probe. The rocks are located in an asteroid belt between Mars and Jupiter and were formed around two billion years ago when a much larger asteroid broke into pieces. Further analysis shows that the dust originates from a smaller grouping of 20 space rocks within the Koronis family called Karin asteroids. It comes from an ancient chondrite rock, common in Karin asteroids, which was formed in space at the birth of the solar system.

Chondrite meteorites often fall to Earth and Dr Genge was able to match the mineralogy and chemistry of the dust particles with chondrite meteorite samples previously collected. He backed up the cosmic dust’s origin with infrared astronomical satellite data which showed Karin asteroids grinding and smashing against one another to create cosmic dust.

Dr Genge says his research holds exciting possibilities for a deeper understanding of our early solar system. He concedes that analysing space dust will never entirely replace space missions, but adds that we may not have to visit so many different places. He concludes:

“This research is the first time we have successfully demonstrated a way to locate the home of these important little particles. The answer to so many important questions, such as why we are here and are we alone in the universe, may well lie inside a cosmic dust particle. Since they are everywhere, even inside our homes, we don’t necessarily have to blast off the Earth to find those answers. Perhaps they are already next to you, right here and right now.”

Colin Smith | alfa
Further information:
http://www.imperial.ac.uk
http://www.gsajournals.org/perlserv/?request=get-toc&issn=0091-7613

Further reports about: Asteroid Cosmic Jupiter Mars comets cosmic dust meteorites pulverised rock solar system

More articles from Physics and Astronomy:

nachricht Climate cycles may explain how running water carved Mars' surface features
02.12.2016 | Penn State

nachricht What do Netflix, Google and planetary systems have in common?
02.12.2016 | University of Toronto

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>