Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cosmic connections: Imperial scientist locates the origin of cosmic dust

03.09.2008
The origin of the microscopic meteorites that make up cosmic dust has been revealed for the first time in new research out Monday (1 September 2008).

The research, published in the journal Geology, shows that some of the cosmic dust falling to Earth comes from an ancient asteroid belt between Jupiter and Mars. This research improves our knowledge of the solar system, and could provide a new and inexpensive method for understanding space.

Cosmic dust particles, originally from asteroids and comets, are minute pieces of pulverised rock. They measure up to a tenth of a millimetre in size and shroud the solar system in a thin cloud. Studying them is important because their mineral content records the conditions under which asteroids and comets were formed over four and a half billion years ago and provides an insight into the earliest history of our solar system.

The study’s author, Dr Mathew Genge, from Imperial College London’s Department of Earth Science and Engineering, has trekked across the globe collecting cosmic dust. He says:

“There are hundreds of billions of extraterrestrial dust particles falling though our skies. This abundant resource is important since these tiny pieces of rock allow us to study distant objects in our solar system without the multi-billion dollar price tag of expensive missions.”

The origin of the cosmic dust that lands on Earth has always been unclear. Scientists previously thought that analysing the chemical and mineral content of individual dust particles was the key to tracing their origin. But this study suggests that a comparison of multiple particles gives better results.

To pinpoint the cosmic dust’s origin, Dr Genge analysed more than 600 particles, painstakingly cataloguing their chemical and mineral content and reassembling them like a complex jigsaw. Dr Genge comments:

“I’ve been studying these particles for quite a while and had all the pieces of the puzzle, but had been trying to figure out the particles one by one. It was only when I took a step back and looked at the minerals and properties of hundreds of particles that it was obvious where they came from. It was like turning over the envelope and finding the return address on the back.”

Dr Genge found that the cosmic dust comes from a family of ancient space rocks called Koronis asteroids, which includes 243 Ida, widely photographed by the NASA Galileo probe. The rocks are located in an asteroid belt between Mars and Jupiter and were formed around two billion years ago when a much larger asteroid broke into pieces. Further analysis shows that the dust originates from a smaller grouping of 20 space rocks within the Koronis family called Karin asteroids. It comes from an ancient chondrite rock, common in Karin asteroids, which was formed in space at the birth of the solar system.

Chondrite meteorites often fall to Earth and Dr Genge was able to match the mineralogy and chemistry of the dust particles with chondrite meteorite samples previously collected. He backed up the cosmic dust’s origin with infrared astronomical satellite data which showed Karin asteroids grinding and smashing against one another to create cosmic dust.

Dr Genge says his research holds exciting possibilities for a deeper understanding of our early solar system. He concedes that analysing space dust will never entirely replace space missions, but adds that we may not have to visit so many different places. He concludes:

“This research is the first time we have successfully demonstrated a way to locate the home of these important little particles. The answer to so many important questions, such as why we are here and are we alone in the universe, may well lie inside a cosmic dust particle. Since they are everywhere, even inside our homes, we don’t necessarily have to blast off the Earth to find those answers. Perhaps they are already next to you, right here and right now.”

Colin Smith | alfa
Further information:
http://www.imperial.ac.uk
http://www.gsajournals.org/perlserv/?request=get-toc&issn=0091-7613

Further reports about: Asteroid Cosmic Jupiter Mars comets cosmic dust meteorites pulverised rock solar system

More articles from Physics and Astronomy:

nachricht Breakthrough with a chain of gold atoms
17.02.2017 | Universität Konstanz

nachricht New functional principle to generate the „third harmonic“
16.02.2017 | Laser Zentrum Hannover e.V.

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>