Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The cosmic burp of dying stars

28.05.2010
Stellar explosions provide the key to understanding the fate of the universe

The mysteries of the Universe and how we came to be are set to be unlocked by a technique for modelling fluids, similar to one which is becoming increasingly popular within the film industry to improve the realism of special effects.

Theoretical Astrophysics student, Fergus Wilson from the University of Leicester, is currently utilising a fluid modelling technique within his doctoral research to enable investigation of the mass transfer from one star to another in a binary star system.

Smoothed Particle Hydrodynamics (SPH) is a computational method for modelling fluid as a set of moving particles and can be used to solve the equations of motion between two or more particles. A similar technique has been used to enhance the special effects in blockbuster Hollywood movies such as Tomb Raider and The Matrix Reloaded.

Mr Wilson uses the SPH method to model the explosive eruptions of dying stars to provide vital clues to the current accelerated expansion of the Universe. Preliminary results from the study will be showcased at the University of Leicester's Festival of Postgraduate Research on 24 June.

Mr Wilson's research focuses on Type Ia supernovae, which occur when White Dwarf stars explode upon reaching a critical mass. His simulations model the formation of discs around accreting stars within a binary star system.

Mr Wilson commented:

"Transferred material from one star in the binary system will form a disc with some of it 'gobbled up' by the accreting star. The accreting star then blows off some of this 'gobbled up' material when the pressure becomes too large. This material forms a blast wave and is blown off into the remainder of the disc. How much of the original accreted mass remains on the accreting star will determine how much mass the accreting star will gain or lose during this process. If the accreting star continues to gain mass it will reach a critical limit and the whole star will explode and a supernova will occur.

"All Type Ia supernovae have the same characteristic luminosity which makes them ideal for measuring astronomical distances. They are used as standard candles by astronomers to determine the distance of celestial objects and have allowed astronomers to measure the distances to galaxies at the edge of the known Universe, providing vital clues into the rate the Universe is expanding.

"Clearly understanding how Type Ia supernovae work is of fundamental importance in the quest of understanding how the Universe works as astronomical distances can be measured which are crucial to understanding the fate of the Universe."

His simulations investigate the different effects the wind speed and rotation of the 'mass feeding' stars will have on the disc size and how the energy in the blast waves effects the disc disruption to aid understanding of the process which will hopefully lead to future technological advancements.

"There are also more worldly applications to SPH. It is ideally suited to modelling fluid flow in a variety of situations such as airflow over a car or plane and pyro flows through buildings. There are therefore areas of overlap between the numerical methods employed in astrophysics and situations of more industrial and commercial interest, and vice versa."

Fergus Wilson will be presenting his research to the public at the University of Leicester on June 24. The Festival of Postgraduate Research introduces employers and the public to the next generation of innovators and cutting-edge researchers, and gives postgraduate researchers the opportunity to explain the real world implications of their research to a wide ranging audience.

More information at: http://www2.le.ac.uk/offices/ssds/sd/pgr/events/fpgr

Fergus Wilson | EurekAlert!
Further information:
http://www.le.ac.uk

More articles from Physics and Astronomy:

nachricht Molecule flash mob
19.01.2017 | Technische Universität Wien

nachricht Magnetic moment of a single antiproton determined with greatest precision ever
19.01.2017 | Johannes Gutenberg-Universität Mainz

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Global threat to primates concerns us all

19.01.2017 | Ecology, The Environment and Conservation

Scientist from Kiel University coordinates Million Euros Project in Inflammation Research

19.01.2017 | Awards Funding

The Great Unknown: Risk-Taking Behavior in Adolescents

19.01.2017 | Studies and Analyses

VideoLinks
B2B-VideoLinks
More VideoLinks >>>