Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The cosmic burp of dying stars

28.05.2010
Stellar explosions provide the key to understanding the fate of the universe

The mysteries of the Universe and how we came to be are set to be unlocked by a technique for modelling fluids, similar to one which is becoming increasingly popular within the film industry to improve the realism of special effects.

Theoretical Astrophysics student, Fergus Wilson from the University of Leicester, is currently utilising a fluid modelling technique within his doctoral research to enable investigation of the mass transfer from one star to another in a binary star system.

Smoothed Particle Hydrodynamics (SPH) is a computational method for modelling fluid as a set of moving particles and can be used to solve the equations of motion between two or more particles. A similar technique has been used to enhance the special effects in blockbuster Hollywood movies such as Tomb Raider and The Matrix Reloaded.

Mr Wilson uses the SPH method to model the explosive eruptions of dying stars to provide vital clues to the current accelerated expansion of the Universe. Preliminary results from the study will be showcased at the University of Leicester's Festival of Postgraduate Research on 24 June.

Mr Wilson's research focuses on Type Ia supernovae, which occur when White Dwarf stars explode upon reaching a critical mass. His simulations model the formation of discs around accreting stars within a binary star system.

Mr Wilson commented:

"Transferred material from one star in the binary system will form a disc with some of it 'gobbled up' by the accreting star. The accreting star then blows off some of this 'gobbled up' material when the pressure becomes too large. This material forms a blast wave and is blown off into the remainder of the disc. How much of the original accreted mass remains on the accreting star will determine how much mass the accreting star will gain or lose during this process. If the accreting star continues to gain mass it will reach a critical limit and the whole star will explode and a supernova will occur.

"All Type Ia supernovae have the same characteristic luminosity which makes them ideal for measuring astronomical distances. They are used as standard candles by astronomers to determine the distance of celestial objects and have allowed astronomers to measure the distances to galaxies at the edge of the known Universe, providing vital clues into the rate the Universe is expanding.

"Clearly understanding how Type Ia supernovae work is of fundamental importance in the quest of understanding how the Universe works as astronomical distances can be measured which are crucial to understanding the fate of the Universe."

His simulations investigate the different effects the wind speed and rotation of the 'mass feeding' stars will have on the disc size and how the energy in the blast waves effects the disc disruption to aid understanding of the process which will hopefully lead to future technological advancements.

"There are also more worldly applications to SPH. It is ideally suited to modelling fluid flow in a variety of situations such as airflow over a car or plane and pyro flows through buildings. There are therefore areas of overlap between the numerical methods employed in astrophysics and situations of more industrial and commercial interest, and vice versa."

Fergus Wilson will be presenting his research to the public at the University of Leicester on June 24. The Festival of Postgraduate Research introduces employers and the public to the next generation of innovators and cutting-edge researchers, and gives postgraduate researchers the opportunity to explain the real world implications of their research to a wide ranging audience.

More information at: http://www2.le.ac.uk/offices/ssds/sd/pgr/events/fpgr

Fergus Wilson | EurekAlert!
Further information:
http://www.le.ac.uk

More articles from Physics and Astronomy:

nachricht Meteoritic stardust unlocks timing of supernova dust formation
19.01.2018 | Carnegie Institution for Science

nachricht Artificial agent designs quantum experiments
19.01.2018 | Universität Innsbruck

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Let the good tubes roll

19.01.2018 | Materials Sciences

How cancer metastasis happens: Researchers reveal a key mechanism

19.01.2018 | Health and Medicine

Meteoritic stardust unlocks timing of supernova dust formation

19.01.2018 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>