Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cornell Reaches Two Milestones Toward a New Coherent X-ray Source

27.10.2011
Cornell scientists have surpassed two major milestones toward a novel, exceedingly powerful X-ray source: A record-breaking electron gun emittance and a successfully tested prototype of a superconducting linac cavity.
For more than a decade, Cornell scientists have been conducting research and development for an Energy Recovery Linac (ERL) electron accelerator that would produce X-ray beams 1,000 times brighter than any in existence.

The university ultimately hopes to use ERL technology to upgrade the Cornell High Energy Synchrotron Source (CHESS), one of five U.S. national facilities for hard X-ray synchrotron radiation research.

The National Science Foundation provided $50 million for 2006-14 to build instrumentation for prototyping and testing ERL concepts proposed by the Cornell team of faculty, students and collaborators. Specifically, the program goals are to prove that electron beams of unmatched quality could be created and accelerated to continuously produce X-ray beams with the laser-like property of coherence. No such X-ray source presently exists.

Cornell’s Energy Recovery Linac or ERL team is now reporting that its prototype electron injector is producing beams with a so-called emittance of 0.8 micrometers – the smallest ever recorded from an electron source of this type. The injector is the key component needed to make an ERL work by creating electron beams that are tightly packed and travelling at nearly the speed of light. The emittance is a measure of how tightly packed the electron beams are.

This small emittance, say the scientists, proves that the ERL could produce X-ray beams focused down to exceedingly small volumes, allowing investigation of materials with unprecedented precision and speed.

In another breakthrough for the ERL project, the scientists have built and tested a prototype seven-cell superconducting radio frequency (SRF) cavity. SRF cavities are needed to accelerate the electrons from the injector to very high energies in order to produce the X-rays. The SRF cavities are operated at -456 F (-271 C), just 2 degrees above absolute zero temperature.

The Cornell researchers’ SRF cavity has met the first performance specifications necessary to continuously power a high intensity ERL. It has been tested in a vertical cryostat at the required temperature and electric field gradients – a significant milestone because it proves the cavities can perform at high power while within the science and cost parameters of the project.

The team must now demonstrate the efficacy of their cavities in horizontal tests, which will take place in 2012.

“These developments go a long way toward proving that an ERL X-ray source will work as predicted by simulations and theory,” said Sol Gruner, director of CHESS.

Blaine Friedlander | Newswise Science News
Further information:
http://www.cornell.edu

Further reports about: CHESS Milestones X-ray beam X-ray microscopy X-ray source electron beams

More articles from Physics and Astronomy:

nachricht Engineering team images tiny quasicrystals as they form
18.08.2017 | Cornell University

nachricht Astrophysicists explain the mysterious behavior of cosmic rays
18.08.2017 | Moscow Institute of Physics and Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Nagoya physicists resolve long-standing mystery of structure-less transition

21.08.2017 | Materials Sciences

Chronic stress induces fatal organ dysfunctions via a new neural circuit

21.08.2017 | Health and Medicine

Scientists from the MSU studied new liquid-crystalline photochrom

21.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>