Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cornell Reaches Two Milestones Toward a New Coherent X-ray Source

27.10.2011
Cornell scientists have surpassed two major milestones toward a novel, exceedingly powerful X-ray source: A record-breaking electron gun emittance and a successfully tested prototype of a superconducting linac cavity.
For more than a decade, Cornell scientists have been conducting research and development for an Energy Recovery Linac (ERL) electron accelerator that would produce X-ray beams 1,000 times brighter than any in existence.

The university ultimately hopes to use ERL technology to upgrade the Cornell High Energy Synchrotron Source (CHESS), one of five U.S. national facilities for hard X-ray synchrotron radiation research.

The National Science Foundation provided $50 million for 2006-14 to build instrumentation for prototyping and testing ERL concepts proposed by the Cornell team of faculty, students and collaborators. Specifically, the program goals are to prove that electron beams of unmatched quality could be created and accelerated to continuously produce X-ray beams with the laser-like property of coherence. No such X-ray source presently exists.

Cornell’s Energy Recovery Linac or ERL team is now reporting that its prototype electron injector is producing beams with a so-called emittance of 0.8 micrometers – the smallest ever recorded from an electron source of this type. The injector is the key component needed to make an ERL work by creating electron beams that are tightly packed and travelling at nearly the speed of light. The emittance is a measure of how tightly packed the electron beams are.

This small emittance, say the scientists, proves that the ERL could produce X-ray beams focused down to exceedingly small volumes, allowing investigation of materials with unprecedented precision and speed.

In another breakthrough for the ERL project, the scientists have built and tested a prototype seven-cell superconducting radio frequency (SRF) cavity. SRF cavities are needed to accelerate the electrons from the injector to very high energies in order to produce the X-rays. The SRF cavities are operated at -456 F (-271 C), just 2 degrees above absolute zero temperature.

The Cornell researchers’ SRF cavity has met the first performance specifications necessary to continuously power a high intensity ERL. It has been tested in a vertical cryostat at the required temperature and electric field gradients – a significant milestone because it proves the cavities can perform at high power while within the science and cost parameters of the project.

The team must now demonstrate the efficacy of their cavities in horizontal tests, which will take place in 2012.

“These developments go a long way toward proving that an ERL X-ray source will work as predicted by simulations and theory,” said Sol Gruner, director of CHESS.

Blaine Friedlander | Newswise Science News
Further information:
http://www.cornell.edu

Further reports about: CHESS Milestones X-ray beam X-ray microscopy X-ray source electron beams

More articles from Physics and Astronomy:

nachricht Electrocatalysis can advance green transition
23.01.2017 | Technical University of Denmark

nachricht Quantum optical sensor for the first time tested in space – with a laser system from Berlin
23.01.2017 | Ferdinand-Braun-Institut Leibniz-Institut für Höchstfrequenztechnik

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Tracking movement of immune cells identifies key first steps in inflammatory arthritis

23.01.2017 | Health and Medicine

Electrocatalysis can advance green transition

23.01.2017 | Physics and Astronomy

New technology for mass-production of complex molded composite components

23.01.2017 | Process Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>