Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Cooling towards absolute zero using super-heavy electrons


New quantum material significantly improves adiabatic demagnetization cooling

To reach temperatures closely above absolute zero at −273.16 °C the demagnetization of magnetic materials under adiabatic, i.e., thermally insulated, conditions is utilized. Up to now, diluted magnetic salts have been used for this purpose. Researchers from Augsburg, Göttingen, Kyoto and Iowa State University report in „Science Advances“ on the discovery of a new metallic compound with super-heavy electrons, whose cooling efficiency significantly beats that of currently used paramagnetic salts.

Temperature evolution of an Yb0.81Sc0.19Co2Zn20 single crystal during the reduction of a magnetic field from 8 to 0 Tesla.

© University of Augsburg, IFP/EP VI

Fundamental research often requires very low temperatures, e.g. to investigate novel quantum effects in matter or to operate highly sensitive particle detectors. Usually the very rare 3-He isotope is utilized for cooling. It exhibits the lowest boiling point of matter but its price is extraordinary high. Over the last decade it increased more than tenfold.

Established: adiabatic demagnetization of paramagnetic salts

The adiabatic demagnetization method is a well-priced and uncomplicated alternative for using 3-He gas. It utilizes magnetic salts whose moments interact so weakly without magnetic field, that they are randomly oriented and order themselves only at very low temperatures. In a moderately large magnetic field the moments are aligned already at enhanced temperature. The entropy is a measure of the degree of disorder or misalignment of the moments. For cooling, the moments are therefore first aligned in a field, to reduce their entropy. Subsequently, the magnetic field is decreased to zero under adiabatic conditions that is without heat exchange to the environment. Because entropy remains constant during this processes, the material can only keep its low entropy if it cools down to very low temperatures.

Significant improvement of efficiency

Commercial adiabatic demagnetization uses paramagnetic salts. However, their thermal conductivity is so bad, that a network of metal wires has to be introduced to them, which significantly reduces the efficiency of the cooling substance per volume. Consequently, the physicists from Augsburg University together with collaborators from Göttingen University, Kyoto University and the Iowa State University intended to develop an alternative cooling substance with improved thermal conductivity. The new synthesized compound (Yb1-xScx)Co2Zn20 has the potential to significantly improve adiabatic demagnetization cooling.

Upon cooling a metal with magnetic moments, typically either ordering of the moments occurs or the moments are getting invalid due to their screening by the conduction electrons. In both cases the entropy is strongly reduced already at elevated temperatures preventing adiabatic demagnetization cooling to very low temperatures. “Aim of our research has been to avoid both effects simultaneously. If successful, it would enable effective cooling by a magnetic metal”, says Prof. Dr. Philipp Gegenwart, leader of the project at Augsburg University.

Formation of super-heavy electrons at low temperatures

The newly discovered (Yb1-xScx)Co2Zn20 fulfills all requirements for the desired properties. As shown in the attached sketch of its structure (inset), the magnetic Yb moments are surrounded by cages from Zn atoms. This structural arrangement is crucial. On the one hand, it hinders the screening of the Yb moments by the Co conduction electrons, on the other hand it also impedes the formation of long-range order. Consequently, the weak interaction of Yb moments and their environment leads to the formation of super-heavy electrons at low temperatures. A small dilution of the Yb atoms by non-magnetic Sc tunes the onset of magnetic order to exact zero temperature. Such a “quantum critical point” in principle allows for cooling down to absolute zero.

Even below 0.03 K

The data published in „Science Advances“ indicate that the new compound, developed by Gegenwart and his international team, cools very strongly during adiabatic demagnetization – even below the lowest measureable temperature 0.03 K of the used setup. Cooling efficiency and thermal conductivity of the new material are significantly better compared to that of magnetic salts evidencing its suitability for improving current low-temperature cooling devices.

Y. Tokiwa, B. Piening, H. S. Jeevan, S.L. Bud’ko. P. C. Canfield, P. Gegenwart, Super-heavy electron material as metallic refrigerant for adiabatic demagnetization cooling. Sci. Adv. 2, e1600835 (2016).

Prof. Dr. Philipp Gegenwart
Lehrstuhl für Experimentalphysik VI/EKM
Institut für Physik / Zentrum für Elektronische Korrelationen und Magnetismus
Universität Augsburg
86135 Augsburg
Telefon +49(0)821/598-3650

Weitere Informationen:

Klaus P. Prem | idw - Informationsdienst Wissenschaft
Further information:

Further reports about: Electrons magnetic field metallic thermal conductivity

More articles from Physics and Astronomy:

nachricht Move over, lasers: Scientists can now create holograms from neutrons, too
21.10.2016 | National Institute of Standards and Technology (NIST)

nachricht Finding the lightest superdeformed triaxial atomic nucleus
20.10.2016 | The Henryk Niewodniczanski Institute of Nuclear Physics Polish Academy of Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>