Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cooling towards absolute zero using super-heavy electrons

12.09.2016

New quantum material significantly improves adiabatic demagnetization cooling

To reach temperatures closely above absolute zero at −273.16 °C the demagnetization of magnetic materials under adiabatic, i.e., thermally insulated, conditions is utilized. Up to now, diluted magnetic salts have been used for this purpose. Researchers from Augsburg, Göttingen, Kyoto and Iowa State University report in „Science Advances“ on the discovery of a new metallic compound with super-heavy electrons, whose cooling efficiency significantly beats that of currently used paramagnetic salts.


Temperature evolution of an Yb0.81Sc0.19Co2Zn20 single crystal during the reduction of a magnetic field from 8 to 0 Tesla.

© University of Augsburg, IFP/EP VI

Fundamental research often requires very low temperatures, e.g. to investigate novel quantum effects in matter or to operate highly sensitive particle detectors. Usually the very rare 3-He isotope is utilized for cooling. It exhibits the lowest boiling point of matter but its price is extraordinary high. Over the last decade it increased more than tenfold.

Established: adiabatic demagnetization of paramagnetic salts

The adiabatic demagnetization method is a well-priced and uncomplicated alternative for using 3-He gas. It utilizes magnetic salts whose moments interact so weakly without magnetic field, that they are randomly oriented and order themselves only at very low temperatures. In a moderately large magnetic field the moments are aligned already at enhanced temperature. The entropy is a measure of the degree of disorder or misalignment of the moments. For cooling, the moments are therefore first aligned in a field, to reduce their entropy. Subsequently, the magnetic field is decreased to zero under adiabatic conditions that is without heat exchange to the environment. Because entropy remains constant during this processes, the material can only keep its low entropy if it cools down to very low temperatures.

Significant improvement of efficiency

Commercial adiabatic demagnetization uses paramagnetic salts. However, their thermal conductivity is so bad, that a network of metal wires has to be introduced to them, which significantly reduces the efficiency of the cooling substance per volume. Consequently, the physicists from Augsburg University together with collaborators from Göttingen University, Kyoto University and the Iowa State University intended to develop an alternative cooling substance with improved thermal conductivity. The new synthesized compound (Yb1-xScx)Co2Zn20 has the potential to significantly improve adiabatic demagnetization cooling.

Upon cooling a metal with magnetic moments, typically either ordering of the moments occurs or the moments are getting invalid due to their screening by the conduction electrons. In both cases the entropy is strongly reduced already at elevated temperatures preventing adiabatic demagnetization cooling to very low temperatures. “Aim of our research has been to avoid both effects simultaneously. If successful, it would enable effective cooling by a magnetic metal”, says Prof. Dr. Philipp Gegenwart, leader of the project at Augsburg University.

Formation of super-heavy electrons at low temperatures

The newly discovered (Yb1-xScx)Co2Zn20 fulfills all requirements for the desired properties. As shown in the attached sketch of its structure (inset), the magnetic Yb moments are surrounded by cages from Zn atoms. This structural arrangement is crucial. On the one hand, it hinders the screening of the Yb moments by the Co conduction electrons, on the other hand it also impedes the formation of long-range order. Consequently, the weak interaction of Yb moments and their environment leads to the formation of super-heavy electrons at low temperatures. A small dilution of the Yb atoms by non-magnetic Sc tunes the onset of magnetic order to exact zero temperature. Such a “quantum critical point” in principle allows for cooling down to absolute zero.

Even below 0.03 K

The data published in „Science Advances“ indicate that the new compound, developed by Gegenwart and his international team, cools very strongly during adiabatic demagnetization – even below the lowest measureable temperature 0.03 K of the used setup. Cooling efficiency and thermal conductivity of the new material are significantly better compared to that of magnetic salts evidencing its suitability for improving current low-temperature cooling devices.


Reference:
Y. Tokiwa, B. Piening, H. S. Jeevan, S.L. Bud’ko. P. C. Canfield, P. Gegenwart, Super-heavy electron material as metallic refrigerant for adiabatic demagnetization cooling. Sci. Adv. 2, e1600835 (2016).

Contact:
Prof. Dr. Philipp Gegenwart
Lehrstuhl für Experimentalphysik VI/EKM
Institut für Physik / Zentrum für Elektronische Korrelationen und Magnetismus
Universität Augsburg
86135 Augsburg
Telefon +49(0)821/598-3650
philipp.gegewart@physik.uni-augsburg.de

Weitere Informationen:

http://advances.sciencemag.org/content/advances/2/9/e1600835.full.pdf

Klaus P. Prem | idw - Informationsdienst Wissenschaft
Further information:
http://www.uni-augsburg.de/

Further reports about: Electrons magnetic field metallic thermal conductivity

More articles from Physics and Astronomy:

nachricht Smooth propagation of spin waves using gold
26.06.2017 | Toyohashi University of Technology

nachricht A 100-year-old physics problem has been solved at EPFL
23.06.2017 | Ecole Polytechnique Fédérale de Lausanne

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Study shines light on brain cells that coordinate movement

26.06.2017 | Life Sciences

Smooth propagation of spin waves using gold

26.06.2017 | Physics and Astronomy

Switchable DNA mini-machines store information

26.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>