Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Cool Calculations for Cold Atoms


New theory of universal three-body encounters

Chemical reactions drive the mechanisms of life as well as a million other natural processes on earth. These reactions occur at a wide spectrum of temperatures, from those prevailing at the chilly polar icecaps to those at work churning near the earth’s core.

At nanokelvin temperatures, by contrast, nothing was supposed to happen. Chemistry was expected to freeze up. Experiments and theoretical work have now show that this is not true. Even at conditions close to absolute zero atoms can interact and manage to form chemical bonds.

Within this science of ultracold chemistry, there is a sub-field that deals with “Efimov states,” named for Russian physicist Vitaly Efimov. In 1970 he predicted that under some conditions all two-particle bound states would be unstable while (paradoxically) some three-particle states could exist. Such states were eventually seen experimentally in 2006, among cesium atoms (see Related JQI Article below).

Two scientists at the Joint Quantum Institute have now formulated a universal theory to describe the properties of these Efimov states, a theory that, for the first time, does not need extra adjustable unknown parameters . This should allow physicists to predict the rates of chemical processes involving three atoms---or even more---using only a knowledge of the interaction forces at work.

The JQI authors, Yujun Wang and Paul Julienne, publish their results in the journal Nature Physics (see Reference Publication below).


Efimov states are fragile. They depend for their existence on quantum effects and on the subtle interplay of two phenomena: Feshbach resonance and van der Waal forces. Quantum effects are necessarily at work at ultracold temperatures in the nano-kelvin regime. Here atoms should be viewed not as hard balls, typically a few tenths of nanometers across, but as wave packets, blobs extending over hundreds of nm.

It is common, when talking about colliding particles, to see them as cars speeding toward each other, perhaps meeting head on or glancing off at a relative angle. It is more unusual to visualize the collision if the “particles” are so large as to overlap each other at relatively great distances. More strange still if three such particles are involved in an interaction whose result will be a loosely-bound confederation.

In the study of Efimov states, the primary force at work among the atoms is the van der Waals force, named for Dutch physicist Johannes Diderik van der Waals. This long-range force among atoms or molecules arises from the temporary appearance of electric dipole moments in the particles.

Even for a neutral atom, a momentary imbalance of charge---more of the atomic electrons’ negative charge might appear to the left, say, leaving a positive preponderance on the right---will constitute an electric dipole, which in turn can attract an atom with a complementary dipole orientation. This induced-dipole force varies at the inverse sixth power of the distance between the two particles.

Another way of controlling inter-particle collisions at ultracold temperatures is to turn on an external magnetic field. For certain ranges of field strength, two particles can be coaxed to form semi-stable objects called Feshbach resonances, named for US physicist Herman Feshbach. Feshbach resonances are commonly used in cold-physics to control interactions, and this is especially true in the study of Efimov states.

Often Feshbach resonances are described in terms of a parameter, a, called the scattering length, denoting the effective distance over which the interaction takes place If a is positive and large (much larger than the nominal range of the force between the atoms), weak binding of atoms can happen. If a is negative, a slight attraction of two atoms can occur but not binding. If, however, a is large and three atoms are present, then the Efimov state can appear. Indeed an infinite number of such states can occur.

In general since it allows interactions over large distances, the Feshbach effect is more important than the van der Waals force. But the JQI research has shown how the van der Waals force can be decisive in forming Efimov states, especially when the scattering length is short. Many scientists had believed that making consistent predictions of triplet-forming interactions would be difficult to make. Instead, the Wang-Julienne model successfully incorporates this short-distance regime.

Thus there should be a series of Efimov states, with various binding energies. But unlike atoms, where the quantum energy levels (denoting how much energy is needed to liberate the electron from its atomic binding) are in the electron volt (eV) range, Efimof states are typified by quantum energies of billionths of an eV or less.


Wang and Julienne build their theory of 3-body van der Waals physics around the Schrödinger equation, the equation introduced by Erwin Schrödinger in the 1920s to treat particles as waves. Only here it is three particles---viewed as three sets of waves, or rather as a complex of waves representing the three particles---carefully studied in pairwise fashion to simulate an effective composite force field in which the three particles operate.

The result is a theoretical tool that can predict the important Efimov properties, namely the energies of the Efimov states, the widths of those states (essentially the fuzziness of our knowledge of the precise energy value), and the rates at which the three-particle states will form inside a gas of ultracold atoms.

“Our theory works for a full range of scattering lengths,” said Yujun Wang describing the JQI work, “whereas the previous theories could only apply to large scattering lengths. We don't need adjustable parameters. The only inputs in our theory are the known two-body Feshbach parameters and our calculations using the Schrodinger equation. So our theory does not rely on any of the unknown three-body inputs that have been used in previous theories to fit the experimental data. In these two aspects our theory is more comprehensive and powerful. We can make quantitative predictions without relying on the unknowns, so that our results can be directly compared to experiments.”

Figure 1. Three panels illustrate the condition of Efimov states (3-atom stable states). The upper, bell-shaped surface represents the probability density for each of the three geometries, while the gray surface represents the strength of the van der Waals force for that geometry. Left panel: the three interacting atoms lie in an equilateral triangle formation. Middle panel: two of the atoms are rather closer together than to the third atom. Right panel: the geometry of the middle panel but with the atoms lying farther apart from each other. The dimples in the probability density surface reflect the more complicated interaction when two of the atoms are close together.Credit JQI/Yujun

Research Contact
Paul Julienne
Yujun Wang
Media Contact
Phillip F. Schewe|
(301) 403-0989

Phillip F. Schewe | Eurek Alert!

More articles from Physics and Astronomy:

nachricht Astronomers find unexpected, dust-obscured star formation in distant galaxy
24.03.2017 | University of Massachusetts at Amherst

nachricht Gravitational wave kicks monster black hole out of galactic core
24.03.2017 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>



Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

More VideoLinks >>>