Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Converting Junk Energy Into Useful Power Mathematically

25.07.2011
A University at Buffalo-led research team has developed a mathematical framework that could one day form the basis of technologies that turn road vibrations, airport runway noise and other “junk” energy into useful power.

The concept all begins with a granular system comprising a chain of equal-sized particles -- spheres, for instance -- that touch one another.

In a paper in Physical Review E this June (http://pre.aps.org/abstract/PRE/v83/i6/e066605), UB theoretical physicist Surajit Sen and colleagues describe how altering the shape of grain-to-grain contact areas between the particles dramatically changes how energy propagates through the system.

Under “normal” circumstances, when the particles are perfect spheres, exerting force on the first sphere in the chain causes energy to travel through the spheres as a compact bundle of energy between 3 to 5 particle diameters wide, at a rate set by Hertz’s Law.

But Sen and his collaborators have discovered that by altering the shape of the surface area of each particle where it presses against the next, it is possible to change how the energy moves. While this finding is yet to be demonstrated experimentally, Sen said that “mathematically, it’s correct. We have proven it.”

“What this work means is that by tweaking force propagation from one grain to another, we can potentially channel energy in controllable ways, which includes slowing down how energy moves, varying the space across which it moves and potentially even holding some of it down,” said Sen, a professor of physics whose partners on the project included former graduate student Diankang Sun, now of New Mexico Resonance in Albuquerque, and Chiara Daraio, a professor at the California Institute of Technology.

“What we have managed to accomplish is we have broadened Hertz’s theory with some extremely simple modifications,” Sen said. “If I hit one end of the chain of particles, the perturbation will travel as an energy bundle. Now we can tune and control that energy.” This modification to Heinrich Hertz’s theory comes 130 years after Hertz’s work was published, Sen said.

While the Physical Review E paper describes a granular, mechanical system, Sen believes the mathematical framework his team developed could be realized using electrical circuit systems as well. One practical application he foresees from such technology: “We could have chips that take energy from road vibrations, runway noise from airports -- energy that we are not able to make use of very well -- and convert it into pulses, packets of electrical energy, that become useful power.”

“You give me noise,” Sen said, “I give you organized bundles.”

The study was supported by the Army Research Office and National Science Foundation.

The University at Buffalo is a premier research-intensive public university, a flagship institution in the State University of New York system and its largest and most comprehensive campus. UB's more than 28,000 students pursue their academic interests through more than 300 undergraduate, graduate and professional degree programs. Founded in 1846, the University at Buffalo is a member of the Association of American Universities.

Charlotte Hsu | Newswise Science News
Further information:
http://www.buffalo.edu

More articles from Physics and Astronomy:

nachricht A 100-year-old physics problem has been solved at EPFL
23.06.2017 | Ecole Polytechnique Fédérale de Lausanne

nachricht Quantum thermometer or optical refrigerator?
23.06.2017 | National Institute of Standards and Technology (NIST)

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Dune ecosystem modelling

26.06.2017 | Ecology, The Environment and Conservation

Insights into closed enzymes

26.06.2017 | Life Sciences

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>