Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Better Control of Microwave Heating for Experiments

For at least 20 years, organic chemists and materials scientists have used microwaves as an alternative energy source to activate materials and break chemical bonds. However, though microwaves are clearly useful, scientists have remained largely in the dark on exactly how they provide special heating properties.

Now, an international research team including chemist Scott Auerbach at the University of Massachusetts Amherst has developed a new molecular-level probe to track how various components in a mixture absorb microwave energy to different extents. Results of their experiments conducted at the Institute Laue-Langevin, Grenoble, France, are reported in a recent issue of Physics Review Letters.

The research team also includes chemical engineer W. Curtis Conner, Jr. and chemistry graduate student Julian Santander, both of UMass Amherst, with others at the University of Lyon and the University of Edinburgh.

With the new tool, based on quasi-elastic neutron scattering, researchers can for the first time measure the effective temperature of components in a mixture to determine which part is hot and which is not. This technique has the potential to determine exactly how microwave heating speeds up chemical and material syntheses. “With this breakthrough, we’ve converted microwave heating from a mysterious tool to a well-understood and predictable method for promoting and speeding up materials synthesis,” Auerbach says.

Most people using a microwave oven know that it warms unevenly and foods must be stirred before eating. This is because fat, proteins, water and minerals such as calcium in milk all absorb energy at different rates, Auerbach explains. The same is true for compounds and synthetic materials in laboratory experiments. But microwaves are widely used because they’re faster, more efficient and promote the chemical changes needed in modern materials science, while conventional heating does not, he adds.

“What we’ve done is to develop a technique for probing a material synthesis activated with microwaves. We blast the system with microwaves and neutrons at the same time. The neutrons act as the probe, bouncing off the system to tell us what’s going on with the temperature inside. It’s like a microscopic thermometer stuck into the system, giving a different temperature reading for each component in the mixture,” Auerbach says.

In experiments, Auerbach and coworkers applied this new method to understand microwave heating of zeolites, which are materials with molecule-sized pores. At present, zeolites are used as catalysts for refining petroleum to high-octane gasoline. They also show promise for refining biomass into biofuels. Auerbach refers to the zeolite as “a hotel for molecules” such as benzene and methanol, which can rotate and vibrate in each room, or bounce from room to room. “We found from the neutron scattering that microwaves cause the molecules to rotate like mad, and bounce from room to room, but they do not vibrate much.”

An expert in computer simulations of microwave-heated zeolites, Auerbach says by using such simulations, “It’s almost as if we can shrink down to the size of an atom to watch this motion, figure out where the microwave energy is going and why it is so efficiently promoting the chemistry. It’s a new kind of thermometer to use for the guest molecules.”

He and colleagues did not get perfect agreement between laboratory experiments and computer simulations, he notes, but for broad characterization of zeolite host temperature, effective guest translational (“room to room”) and spinning temperature, their results provide “very good agreement on the extent of selective heating.”

Overall, the authors summarize that their work provides “the first unambiguous, microscopic evidence for athermal effects in microwave-driven zeolite-guest materials.” With this advance, Auerbach suggests that microwave heating will be a “hot field for a long time to come.”

Scott Auerbach | Newswise Science News
Further information:

More articles from Physics and Astronomy:

nachricht Move over, lasers: Scientists can now create holograms from neutrons, too
21.10.2016 | National Institute of Standards and Technology (NIST)

nachricht Finding the lightest superdeformed triaxial atomic nucleus
20.10.2016 | The Henryk Niewodniczanski Institute of Nuclear Physics Polish Academy of Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>