Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Better Control of Microwave Heating for Experiments

02.05.2011
For at least 20 years, organic chemists and materials scientists have used microwaves as an alternative energy source to activate materials and break chemical bonds. However, though microwaves are clearly useful, scientists have remained largely in the dark on exactly how they provide special heating properties.

Now, an international research team including chemist Scott Auerbach at the University of Massachusetts Amherst has developed a new molecular-level probe to track how various components in a mixture absorb microwave energy to different extents. Results of their experiments conducted at the Institute Laue-Langevin, Grenoble, France, are reported in a recent issue of Physics Review Letters.

The research team also includes chemical engineer W. Curtis Conner, Jr. and chemistry graduate student Julian Santander, both of UMass Amherst, with others at the University of Lyon and the University of Edinburgh.

With the new tool, based on quasi-elastic neutron scattering, researchers can for the first time measure the effective temperature of components in a mixture to determine which part is hot and which is not. This technique has the potential to determine exactly how microwave heating speeds up chemical and material syntheses. “With this breakthrough, we’ve converted microwave heating from a mysterious tool to a well-understood and predictable method for promoting and speeding up materials synthesis,” Auerbach says.

Most people using a microwave oven know that it warms unevenly and foods must be stirred before eating. This is because fat, proteins, water and minerals such as calcium in milk all absorb energy at different rates, Auerbach explains. The same is true for compounds and synthetic materials in laboratory experiments. But microwaves are widely used because they’re faster, more efficient and promote the chemical changes needed in modern materials science, while conventional heating does not, he adds.

“What we’ve done is to develop a technique for probing a material synthesis activated with microwaves. We blast the system with microwaves and neutrons at the same time. The neutrons act as the probe, bouncing off the system to tell us what’s going on with the temperature inside. It’s like a microscopic thermometer stuck into the system, giving a different temperature reading for each component in the mixture,” Auerbach says.

In experiments, Auerbach and coworkers applied this new method to understand microwave heating of zeolites, which are materials with molecule-sized pores. At present, zeolites are used as catalysts for refining petroleum to high-octane gasoline. They also show promise for refining biomass into biofuels. Auerbach refers to the zeolite as “a hotel for molecules” such as benzene and methanol, which can rotate and vibrate in each room, or bounce from room to room. “We found from the neutron scattering that microwaves cause the molecules to rotate like mad, and bounce from room to room, but they do not vibrate much.”

An expert in computer simulations of microwave-heated zeolites, Auerbach says by using such simulations, “It’s almost as if we can shrink down to the size of an atom to watch this motion, figure out where the microwave energy is going and why it is so efficiently promoting the chemistry. It’s a new kind of thermometer to use for the guest molecules.”

He and colleagues did not get perfect agreement between laboratory experiments and computer simulations, he notes, but for broad characterization of zeolite host temperature, effective guest translational (“room to room”) and spinning temperature, their results provide “very good agreement on the extent of selective heating.”

Overall, the authors summarize that their work provides “the first unambiguous, microscopic evidence for athermal effects in microwave-driven zeolite-guest materials.” With this advance, Auerbach suggests that microwave heating will be a “hot field for a long time to come.”

Scott Auerbach | Newswise Science News
Further information:
http://www.umass.edu

More articles from Physics and Astronomy:

nachricht Hope to discover sure signs of life on Mars? New research says look for the element vanadium
22.09.2017 | University of Kansas

nachricht Calculating quietness
22.09.2017 | Forschungszentrum MATHEON ECMath

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>