Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Better Control of Microwave Heating for Experiments

02.05.2011
For at least 20 years, organic chemists and materials scientists have used microwaves as an alternative energy source to activate materials and break chemical bonds. However, though microwaves are clearly useful, scientists have remained largely in the dark on exactly how they provide special heating properties.

Now, an international research team including chemist Scott Auerbach at the University of Massachusetts Amherst has developed a new molecular-level probe to track how various components in a mixture absorb microwave energy to different extents. Results of their experiments conducted at the Institute Laue-Langevin, Grenoble, France, are reported in a recent issue of Physics Review Letters.

The research team also includes chemical engineer W. Curtis Conner, Jr. and chemistry graduate student Julian Santander, both of UMass Amherst, with others at the University of Lyon and the University of Edinburgh.

With the new tool, based on quasi-elastic neutron scattering, researchers can for the first time measure the effective temperature of components in a mixture to determine which part is hot and which is not. This technique has the potential to determine exactly how microwave heating speeds up chemical and material syntheses. “With this breakthrough, we’ve converted microwave heating from a mysterious tool to a well-understood and predictable method for promoting and speeding up materials synthesis,” Auerbach says.

Most people using a microwave oven know that it warms unevenly and foods must be stirred before eating. This is because fat, proteins, water and minerals such as calcium in milk all absorb energy at different rates, Auerbach explains. The same is true for compounds and synthetic materials in laboratory experiments. But microwaves are widely used because they’re faster, more efficient and promote the chemical changes needed in modern materials science, while conventional heating does not, he adds.

“What we’ve done is to develop a technique for probing a material synthesis activated with microwaves. We blast the system with microwaves and neutrons at the same time. The neutrons act as the probe, bouncing off the system to tell us what’s going on with the temperature inside. It’s like a microscopic thermometer stuck into the system, giving a different temperature reading for each component in the mixture,” Auerbach says.

In experiments, Auerbach and coworkers applied this new method to understand microwave heating of zeolites, which are materials with molecule-sized pores. At present, zeolites are used as catalysts for refining petroleum to high-octane gasoline. They also show promise for refining biomass into biofuels. Auerbach refers to the zeolite as “a hotel for molecules” such as benzene and methanol, which can rotate and vibrate in each room, or bounce from room to room. “We found from the neutron scattering that microwaves cause the molecules to rotate like mad, and bounce from room to room, but they do not vibrate much.”

An expert in computer simulations of microwave-heated zeolites, Auerbach says by using such simulations, “It’s almost as if we can shrink down to the size of an atom to watch this motion, figure out where the microwave energy is going and why it is so efficiently promoting the chemistry. It’s a new kind of thermometer to use for the guest molecules.”

He and colleagues did not get perfect agreement between laboratory experiments and computer simulations, he notes, but for broad characterization of zeolite host temperature, effective guest translational (“room to room”) and spinning temperature, their results provide “very good agreement on the extent of selective heating.”

Overall, the authors summarize that their work provides “the first unambiguous, microscopic evidence for athermal effects in microwave-driven zeolite-guest materials.” With this advance, Auerbach suggests that microwave heating will be a “hot field for a long time to come.”

Scott Auerbach | Newswise Science News
Further information:
http://www.umass.edu

More articles from Physics and Astronomy:

nachricht Temperature-controlled fiber-optic light source with liquid core
20.06.2018 | Leibniz-Institut für Photonische Technologien e. V.

nachricht New material for splitting water
19.06.2018 | American Institute of Physics

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Creating a new composite fuel for new-generation fast reactors

20.06.2018 | Materials Sciences

Game-changing finding pushes 3D-printing to the molecular limit

20.06.2018 | Materials Sciences

Could this material enable autonomous vehicles to come to market sooner?

20.06.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>