Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Constant change

15.07.2015

Advances in determination of fundamental constants to guide redefinition of scientific units to rely on constants of nature instead of physical standards

The fundamental constants that govern the laws of nature are being determined with increasing accuracy, according to a review paper published this week in Journal of Physical and Chemical Reference Data, from AIP Publishing.


NIST's watt balance is a powerful measuring tool that is aiding in the redefinition of the kilogram

Credit: NIST

The paper outlines the proceedings from this year's Workshop on the Determination of the Fundamental Constants, where an international community of physicists and metrologists convened to share their research into an array of fundamental constants. Ultimately, better definitions of these constants will aid in the effort to redefine several standard scientific units, including the kilogram and the Kelvin, by 2018.

Fundamental constants describe a variety of physical properties in the world around us. Planck's constant, for example, governs the relationship between energy and frequency. The fine-structure constant explains the strength of electromagnetic interaction between charged particles. Fundamental constants such as these underlie the development of much of today's technology, from atomic clocks to GPS systems.

They are also linked to the International System of Units (SI), the standard measurement system used throughout the scientific community and in most countries around the world. By defining units like the meter in terms of fixed fundamental constants such as the speed of light, we ensure that they remain the same over time.

However, some SI units, like the kilogram, still rely on a physical standard -- in this case, a platinum-iridium cylinder housed in France. Now that scientific research is carried out across the globe, relying on a single physical standard is somewhat limiting, as mass standards in other countries must be periodically calibrated against the original. In addition, the standard itself is subject to changes in mass over time.

To make the system more consistent and accessible, the international metrology community plans to redefine all SI units in terms of fundamental constants by 2018. Before we can redefine an entire system of units, though, it is important to be certain that the fundamental constants upon which the definitions depend are as accurate and precise as possible. And since different measurement procedures or data collection techniques can yield slightly different results, pinning down the exact values of these constants can be a surprisingly fussy business.

"The objective of the SI is to provide the best possible standards, and the redefinition will be a step in that direction," said Peter Mohr, a researcher at the National Institute for Standards and Technology (NIST).

Luckily, some of the values for previously-contested constants appear to be converging. For instance, the recent workshop highlighted advances in the determination of the Bolzmann constant k, which explains the relationship between temperature and particle energy. Under the new SI system, the fixed Bolzmann constant will be used to define the Kelvin, the SI unit of temperature.

Planck's constant has also seen marked progress. "The Planck constant was problematic in the past, as there were disagreeing values obtained by different experiments. However, the values seem to be converging to a sufficiently reliable value for the redefinition of the SI to move forward," said Mohr. Planck's constant will eventually be fixed and used to define the kilogram.

"The new definitions will make many of the physical constants that are measured now exact in the future. Others, although not exact, will be more accurate," said Mohr. "This will stabilize the values of the constants and provide accurate measurement standards."

The 2015 workshop provided input to the latest adjustment of the official values for a number of fundamental physical constants, now available online. This adjustment is not the final one before the official SI redefinition in 2018, but it's still an important step forward. Growing consensus on the values of certain fundamental physical constants suggests that we may be almost ready to fix their values and move to a more reliable and streamlined measurement system.

###

The article, "Advances in determination of fundamental constants," is authored by Savely G. Karshenboim, Peter J. Mohr and David B. Newell. It will appear in the Journal of Physical and Chemical Reference Data on July 14, 2015. After that date, it can be accessed at http://scitation.aip.org/content/aip/journal/jpcrd/44/3/10.1063/1.4926575.

ABOUT THE JOURNAL

Journal of Physical and Chemical Reference Data is the authoritative resource for critically evaluated reference data for physical science and engineering disciplines. The journal publishes papers which report the best available measurements for the relevant properties. http://jpcrd.aip.org

Media Contact

Jason Socrates Bardi
jbardi@aip.org
240-535-4954

 @jasonbardi

http://www.aip.org 

Jason Socrates Bardi | EurekAlert!

More articles from Physics and Astronomy:

nachricht New research identifies how 3-D printed metals can be both strong and ductile
11.12.2017 | University of Birmingham

nachricht Three kinds of information from a single X-ray measurement
11.12.2017 | Friedrich-Schiller-Universität Jena

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

Im Focus: Virtual Reality for Bacteria

An interdisciplinary group of researchers interfaced individual bacteria with a computer to build a hybrid bio-digital circuit - Study published in Nature Communications

Scientists at the Institute of Science and Technology Austria (IST Austria) have managed to control the behavior of individual bacteria by connecting them to a...

Im Focus: A space-time sensor for light-matter interactions

Physicists in the Laboratory for Attosecond Physics (run jointly by LMU Munich and the Max Planck Institute for Quantum Optics) have developed an attosecond electron microscope that allows them to visualize the dispersion of light in time and space, and observe the motions of electrons in atoms.

The most basic of all physical interactions in nature is that between light and matter. This interaction takes place in attosecond times (i.e. billionths of a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

Blockchain is becoming more important in the energy market

05.12.2017 | Event News

 
Latest News

New research identifies how 3-D printed metals can be both strong and ductile

11.12.2017 | Physics and Astronomy

Scientists channel graphene to understand filtration and ion transport into cells

11.12.2017 | Materials Sciences

What makes corals sick?

11.12.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>