Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Causes and Consequences of the Helium-3 Supply Crisis

27.04.2010
The sudden shortage of a nuclear weapons production byproduct that is critical to industries such as nuclear detection, oil and gas, and medical diagnostics was the focus as a House Science and Technology panel heard testimony April 22 from a professor at Washington University in St. Louis.

Jason C. Woods, PhD, an assistant professor of radiology and physics and assistant dean of Arts & Sciences, testified April 22 as the Investigations and Oversight Subcommittee opened a formal probe of the nation’s looming helium-3 supply crisis. The hearings, held at the Rayburn House Office Building in D.C., are investigating how the supply crunch affects certain industries and why the nation missed the warning signs.

Helium-3 is a nontoxic byproduct of producing nuclear weapons. It is a stable isotope with two protons and one neutron in its nucleus, one fewer neutron than the more common form of helium. And that missing neutron gives it special physical properties that have made it essential in cryogenics, medical diagnostics, oil and gas operations and nuclear radiation detection.

Woods' testimony is available online as a full-text PDF:
http://democrats.science.house.gov/Media/file/Commdocs/hearings/2010/
Oversight/22apr/Woods_Testimony.pdf
Woods, an assistant professor of radiology at the Mallinckrodt Institute of Radiology’s Biomedical MR Laboratory, also serves as program director of the Hyperpolarized Media MR Study Group at the International Society for Magnetic Resonance in Medicine (ISMRM).

His testimony broadcast live on the C-SPAN cable news channel, described how helium 3 plays a critical role in his lung research. Woods uses helium to determine which portion of the lung functions and which does not, research that’s been instrumental in developing new and important procedures for safe lung testing.

The helium 3 isotope is relatively rare on Earth, so it is manufactured instead of recovered from natural deposits. It is formed when tritium, a radioactive form of hydrogen, decays. Only the United States and Russia produce significant amounts of tritium gas. Current supplies of helium-3 are sourced from the refurbishment and dismantlement of the nuclear stockpile.

Supplies have dwindled because U.S. nuclear weapons production has come to a virtual halt with the end of the Cold War. But since the Sept. 11, 2001, attacks, demand has increased for helium-3 because of its use as a neutron detector in radiation monitors for national security, nonproliferation and homeland security applications.

“The failure to identify this situation in a more timely fashion as well as an apparent failure to alert users who rely on helium-3 that a shortage was imminent, has created a national crisis forcing the nation to launch a crash research program to identify substitute materials for use in radiation detection,” subcommittee Chairman Brad Miller (D-N.C.) wrote last month in a letter to Energy Secretary Steven Chu.

According to DOE, projected demand for helium-3 is about 65,000 liters per year through 2013, but domestic production is expected to be only a small fraction of that.

The issue came to the Science Committee's attention during a series of hearings last year about ongoing problems with the next generation of radiation monitors that use helium-3 as a neutron detector.

The subcommittee has commissioned the Government Accountability Office to conduct a study into the causes and effects of the looming supply crisis. The preliminary results of that study were expected to be discussed during Thursday's hearing.

But the results may not be all bad.

DOE, DHS, the Defense Department and other government agencies have formed a group to address the decreasing supply of helium-3.

Discussions include the pursuit of alternative technologies for neutron detection, finding alternative methods to produce helium-3 and better allocation of the existing supply.

“It appears that one or more substitutes hold promise as an effective replacement for helium-3 in radiation detection,” Miller wrote in a separate letter last month to Homeland Security Secretary Janet Napolitano. “However, this crash program was probably avoidable with a more prudent approach to managing the helium-3 stockpile.”

Other witnesses at the hearing include Tom Anderson, product manager, GE Energy; Richard Arsenault, director of Health, Safety, Security and Environment, ThruBit LLC; William Halperin, physics professor, Northwestern University; William Hagan, acting director, Domestic Nuclear Detection Office, Department of Homeland Security; and William Brinkman, director, Office of Science, Energy Department.

Woods received his bachelor’s degree in physics from Rhodes College in Memphis, Tennessee; his undergraduate work was on tunable, liquid crystal optical filters and the solar chromosphere. He graduated from Washington University in 2002 with a doctoral degree focused on hyperpolarization and applications of noble gases with nuclear magnetic moments far from Boltzmann equilibrium.

His research is now on the development of hyperpolarization techniques, the development and refinement of new pulmonary imaging techniques, the application of these techniques to specific studies of the lung and pulmonary diseases (COPD in particular), discovery and study of relevant biomolecular signaling pathways, and the translation of imaging techniques to guide new therapeutic or surgical remedies.

Following the Congressional testimony, Woods will be traveling to Europe and presenting papers in Italy, France and Sweden.

Gerry Everding | Newswise Science News
Further information:
http://www.wustl.edu

More articles from Physics and Astronomy:

nachricht A 100-year-old physics problem has been solved at EPFL
23.06.2017 | Ecole Polytechnique Fédérale de Lausanne

nachricht Quantum thermometer or optical refrigerator?
23.06.2017 | National Institute of Standards and Technology (NIST)

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>