Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Causes and Consequences of the Helium-3 Supply Crisis

27.04.2010
The sudden shortage of a nuclear weapons production byproduct that is critical to industries such as nuclear detection, oil and gas, and medical diagnostics was the focus as a House Science and Technology panel heard testimony April 22 from a professor at Washington University in St. Louis.

Jason C. Woods, PhD, an assistant professor of radiology and physics and assistant dean of Arts & Sciences, testified April 22 as the Investigations and Oversight Subcommittee opened a formal probe of the nation’s looming helium-3 supply crisis. The hearings, held at the Rayburn House Office Building in D.C., are investigating how the supply crunch affects certain industries and why the nation missed the warning signs.

Helium-3 is a nontoxic byproduct of producing nuclear weapons. It is a stable isotope with two protons and one neutron in its nucleus, one fewer neutron than the more common form of helium. And that missing neutron gives it special physical properties that have made it essential in cryogenics, medical diagnostics, oil and gas operations and nuclear radiation detection.

Woods' testimony is available online as a full-text PDF:
http://democrats.science.house.gov/Media/file/Commdocs/hearings/2010/
Oversight/22apr/Woods_Testimony.pdf
Woods, an assistant professor of radiology at the Mallinckrodt Institute of Radiology’s Biomedical MR Laboratory, also serves as program director of the Hyperpolarized Media MR Study Group at the International Society for Magnetic Resonance in Medicine (ISMRM).

His testimony broadcast live on the C-SPAN cable news channel, described how helium 3 plays a critical role in his lung research. Woods uses helium to determine which portion of the lung functions and which does not, research that’s been instrumental in developing new and important procedures for safe lung testing.

The helium 3 isotope is relatively rare on Earth, so it is manufactured instead of recovered from natural deposits. It is formed when tritium, a radioactive form of hydrogen, decays. Only the United States and Russia produce significant amounts of tritium gas. Current supplies of helium-3 are sourced from the refurbishment and dismantlement of the nuclear stockpile.

Supplies have dwindled because U.S. nuclear weapons production has come to a virtual halt with the end of the Cold War. But since the Sept. 11, 2001, attacks, demand has increased for helium-3 because of its use as a neutron detector in radiation monitors for national security, nonproliferation and homeland security applications.

“The failure to identify this situation in a more timely fashion as well as an apparent failure to alert users who rely on helium-3 that a shortage was imminent, has created a national crisis forcing the nation to launch a crash research program to identify substitute materials for use in radiation detection,” subcommittee Chairman Brad Miller (D-N.C.) wrote last month in a letter to Energy Secretary Steven Chu.

According to DOE, projected demand for helium-3 is about 65,000 liters per year through 2013, but domestic production is expected to be only a small fraction of that.

The issue came to the Science Committee's attention during a series of hearings last year about ongoing problems with the next generation of radiation monitors that use helium-3 as a neutron detector.

The subcommittee has commissioned the Government Accountability Office to conduct a study into the causes and effects of the looming supply crisis. The preliminary results of that study were expected to be discussed during Thursday's hearing.

But the results may not be all bad.

DOE, DHS, the Defense Department and other government agencies have formed a group to address the decreasing supply of helium-3.

Discussions include the pursuit of alternative technologies for neutron detection, finding alternative methods to produce helium-3 and better allocation of the existing supply.

“It appears that one or more substitutes hold promise as an effective replacement for helium-3 in radiation detection,” Miller wrote in a separate letter last month to Homeland Security Secretary Janet Napolitano. “However, this crash program was probably avoidable with a more prudent approach to managing the helium-3 stockpile.”

Other witnesses at the hearing include Tom Anderson, product manager, GE Energy; Richard Arsenault, director of Health, Safety, Security and Environment, ThruBit LLC; William Halperin, physics professor, Northwestern University; William Hagan, acting director, Domestic Nuclear Detection Office, Department of Homeland Security; and William Brinkman, director, Office of Science, Energy Department.

Woods received his bachelor’s degree in physics from Rhodes College in Memphis, Tennessee; his undergraduate work was on tunable, liquid crystal optical filters and the solar chromosphere. He graduated from Washington University in 2002 with a doctoral degree focused on hyperpolarization and applications of noble gases with nuclear magnetic moments far from Boltzmann equilibrium.

His research is now on the development of hyperpolarization techniques, the development and refinement of new pulmonary imaging techniques, the application of these techniques to specific studies of the lung and pulmonary diseases (COPD in particular), discovery and study of relevant biomolecular signaling pathways, and the translation of imaging techniques to guide new therapeutic or surgical remedies.

Following the Congressional testimony, Woods will be traveling to Europe and presenting papers in Italy, France and Sweden.

Gerry Everding | Newswise Science News
Further information:
http://www.wustl.edu

More articles from Physics and Astronomy:

nachricht Space radiation won't stop NASA's human exploration
18.10.2017 | NASA/Johnson Space Center

nachricht Study shows how water could have flowed on 'cold and icy' ancient Mars
18.10.2017 | Brown University

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Osaka university researchers make the slipperiest surfaces adhesive

18.10.2017 | Materials Sciences

Space radiation won't stop NASA's human exploration

18.10.2017 | Physics and Astronomy

Los Alamos researchers and supercomputers help interpret the latest LIGO findings

18.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>