Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Causes and Consequences of the Helium-3 Supply Crisis

27.04.2010
The sudden shortage of a nuclear weapons production byproduct that is critical to industries such as nuclear detection, oil and gas, and medical diagnostics was the focus as a House Science and Technology panel heard testimony April 22 from a professor at Washington University in St. Louis.

Jason C. Woods, PhD, an assistant professor of radiology and physics and assistant dean of Arts & Sciences, testified April 22 as the Investigations and Oversight Subcommittee opened a formal probe of the nation’s looming helium-3 supply crisis. The hearings, held at the Rayburn House Office Building in D.C., are investigating how the supply crunch affects certain industries and why the nation missed the warning signs.

Helium-3 is a nontoxic byproduct of producing nuclear weapons. It is a stable isotope with two protons and one neutron in its nucleus, one fewer neutron than the more common form of helium. And that missing neutron gives it special physical properties that have made it essential in cryogenics, medical diagnostics, oil and gas operations and nuclear radiation detection.

Woods' testimony is available online as a full-text PDF:
http://democrats.science.house.gov/Media/file/Commdocs/hearings/2010/
Oversight/22apr/Woods_Testimony.pdf
Woods, an assistant professor of radiology at the Mallinckrodt Institute of Radiology’s Biomedical MR Laboratory, also serves as program director of the Hyperpolarized Media MR Study Group at the International Society for Magnetic Resonance in Medicine (ISMRM).

His testimony broadcast live on the C-SPAN cable news channel, described how helium 3 plays a critical role in his lung research. Woods uses helium to determine which portion of the lung functions and which does not, research that’s been instrumental in developing new and important procedures for safe lung testing.

The helium 3 isotope is relatively rare on Earth, so it is manufactured instead of recovered from natural deposits. It is formed when tritium, a radioactive form of hydrogen, decays. Only the United States and Russia produce significant amounts of tritium gas. Current supplies of helium-3 are sourced from the refurbishment and dismantlement of the nuclear stockpile.

Supplies have dwindled because U.S. nuclear weapons production has come to a virtual halt with the end of the Cold War. But since the Sept. 11, 2001, attacks, demand has increased for helium-3 because of its use as a neutron detector in radiation monitors for national security, nonproliferation and homeland security applications.

“The failure to identify this situation in a more timely fashion as well as an apparent failure to alert users who rely on helium-3 that a shortage was imminent, has created a national crisis forcing the nation to launch a crash research program to identify substitute materials for use in radiation detection,” subcommittee Chairman Brad Miller (D-N.C.) wrote last month in a letter to Energy Secretary Steven Chu.

According to DOE, projected demand for helium-3 is about 65,000 liters per year through 2013, but domestic production is expected to be only a small fraction of that.

The issue came to the Science Committee's attention during a series of hearings last year about ongoing problems with the next generation of radiation monitors that use helium-3 as a neutron detector.

The subcommittee has commissioned the Government Accountability Office to conduct a study into the causes and effects of the looming supply crisis. The preliminary results of that study were expected to be discussed during Thursday's hearing.

But the results may not be all bad.

DOE, DHS, the Defense Department and other government agencies have formed a group to address the decreasing supply of helium-3.

Discussions include the pursuit of alternative technologies for neutron detection, finding alternative methods to produce helium-3 and better allocation of the existing supply.

“It appears that one or more substitutes hold promise as an effective replacement for helium-3 in radiation detection,” Miller wrote in a separate letter last month to Homeland Security Secretary Janet Napolitano. “However, this crash program was probably avoidable with a more prudent approach to managing the helium-3 stockpile.”

Other witnesses at the hearing include Tom Anderson, product manager, GE Energy; Richard Arsenault, director of Health, Safety, Security and Environment, ThruBit LLC; William Halperin, physics professor, Northwestern University; William Hagan, acting director, Domestic Nuclear Detection Office, Department of Homeland Security; and William Brinkman, director, Office of Science, Energy Department.

Woods received his bachelor’s degree in physics from Rhodes College in Memphis, Tennessee; his undergraduate work was on tunable, liquid crystal optical filters and the solar chromosphere. He graduated from Washington University in 2002 with a doctoral degree focused on hyperpolarization and applications of noble gases with nuclear magnetic moments far from Boltzmann equilibrium.

His research is now on the development of hyperpolarization techniques, the development and refinement of new pulmonary imaging techniques, the application of these techniques to specific studies of the lung and pulmonary diseases (COPD in particular), discovery and study of relevant biomolecular signaling pathways, and the translation of imaging techniques to guide new therapeutic or surgical remedies.

Following the Congressional testimony, Woods will be traveling to Europe and presenting papers in Italy, France and Sweden.

Gerry Everding | Newswise Science News
Further information:
http://www.wustl.edu

More articles from Physics and Astronomy:

nachricht Witnessing turbulent motion in the atmosphere of a distant star
23.08.2017 | Max-Planck-Institut für Radioastronomie

nachricht Heating quantum matter: A novel view on topology
22.08.2017 | Université libre de Bruxelles

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

What the world's tiniest 'monster truck' reveals

23.08.2017 | Life Sciences

Treating arthritis with algae

23.08.2017 | Life Sciences

Witnessing turbulent motion in the atmosphere of a distant star

23.08.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>