Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Computing the best high-resolution 3-D tissue images

24.04.2012
Real-time, 3-D microscopic tissue imaging could be a revolution for medical fields such as cancer diagnosis, minimally invasive surgery and ophthalmology. University of Illinois researchers have developed a technique to computationally correct for aberrations in optical tomography, bringing the future of medical imaging into focus.

The computational technique could provide faster, less expensive and higher resolution tissue imaging to a broader population of users. The group describes its technique this week in the online early edition of the Proceedings of the National Academy of Sciences.

“Computational techniques allow you to go beyond what the optical system can do alone, to ultimately get the best quality images and three-dimensional datasets,” said Steven Adie, a postdoctoral researcher at the Beckman Institute for Advanced Science and Technology at the U. of I. “This would be very useful for real-time imaging applications such as image-guided surgery.”

Aberrations, such as astigmatism or distortion, plague high-resolution imaging. They make objects that should look like fine points appear to be blobs or streaks. The higher the resolution, the worse the problem becomes. It’s especially tricky in tissue imaging, when precision is vital to a correct diagnosis.

Adaptive optics can correct aberrations in imaging. It’s widely used in astronomy to correct for distortion as starlight filters through the atmosphere. A complex system of mirrors smooth out the scattered light before it enters the lens. Medical scientists have begun applying adaptive optics hardware to microscopes, hoping to improve cell and tissue imaging.

“It’s the same challenge, but instead of imaging through the atmosphere, we’re imaging through tissue, and instead of imaging a star, we’re imaging a cell,” said Stephen Boppart, a professor of electrical and computer engineering, of bioengineering and of internal medicine at the U. of I. “But a lot of the optical problems are the same.”

Unfortunately, hardware-based adaptive optics are complicated, tedious to align and extremely expensive. They can only focus on one focal plane at a time, so for tomography – 3-D models constructed from sectional images as in a CT scan, for example – the mirrors have to be adjusted and a new image scanned for each focal plane. In addition, complex corrective systems are impractical for handheld or portable devices, such as surgical probes or retinal scanners.

Therefore, instead of using hardware to correct a light profile before it enters the lens, the Illinois team uses computer software to find and correct aberrations after the image is taken. Boppart's group teamed up with with Scott Carney, a professor of electrical and computer engineering and the head of the Optical Science Group at the Beckman Institute, to develop the technique, called computational adaptive optics. They demonstrated the technique in gel-based phantoms laced with microparticles as well as in rat lung tissue. They scan a tissue sample with an interferometric microscope, which is an optical imaging device using two beams of light. The computer collects all of the data and then corrects the images at all depths within the volume. Blurry streaks become sharp points, features emerge from noise, and users can change parameters with the click of a mouse.

“Being able to correct aberrations of the entire volume helps us to get a high-resolution image anywhere in that volume,” said Adie. “Now you can see tissue structures that previously were not very clear at all.”

Computed adaptive optics can be applied to any type of interferometric imaging, such as optical coherence tomography, and the computations can be performed on an ordinary desktop computer, making it accessible for many hospitals and clinics.

Next, the researchers are working to refine the algorithms and explore applications. They are combining their computational adaptive optics with graphics processors, looking forward to real-time in-vivo applications for surgery, minimally invasive biopsy and more.

For example, computational adaptive optics could be very useful for ophthalmologists. Boppart’s group previously has developed various handheld optical tomography devices for imaging inside the eye, particularly retinal scanning. Aberrations are very common in the human eye, making it difficult to acquire clear images. But adaptive optics hardware is too expensive or too complicated for most practicing ophthalmologists. With a computational solution, many more ophthalmologists could more effectively examine and treat their patients.

“The effectiveness is striking,” Boppart said. “Because of the aberrations of the human eye, when you look at the retina without adaptive optics you just see variations of light and dark areas that represent the rods and cones. But when you use adaptive optics, you see the rods and cones as distinct objects.”

In addition, the ability to correct data post-acquisition allows the researchers to develop microscope systems that maximize light collection instead of worrying about minimizing aberrations. This could lead to better data for better image rendering.

“We are working to compute the best image possible,” said Boppart, who also is affiliated with the Institute for Genomic Biology at the U. of I.

The National Institutes of Health and the National Science Foundation supported this work.

Liz Ahlberg | EurekAlert!
Further information:
http://www.illinois.edu
http://www.news.illinois.edu/news/12/0423optics_StephenBoppart.html

More articles from Physics and Astronomy:

nachricht Studying fundamental particles in materials
17.01.2017 | Max-Planck-Institut für Struktur und Dynamik der Materie

nachricht Seeing the quantum future... literally
16.01.2017 | University of Sydney

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

How gut bacteria can make us ill

18.01.2017 | Life Sciences

On track to heal leukaemia

18.01.2017 | Health and Medicine

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>