Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New computer simulation helps explain folding in important cellular protein

03.08.2009
Most parts of living organisms come packaged with ribbons. The ribbons are proteins—chains of amino acids that must fold into three-dimensional structures to work properly. But when for any reason the ribbons fold incorrectly, bad things can happen, and in humans misfolded-protein disorders include Alzheimer’s and Parkinson’s diseases.

Scientists have for the past three decades tried to understand what makes proteins fold into functional units and why it happens, and several breakthroughs have occurred through computer modeling—a field that dramatically increases analytical speed.

Now, scientists at the University of Georgia have created a two-step computer simulation (using an important process called the Wang-Landau algorithm) that sheds light on how a crucial protein—glycophorin A—becomes an active part of living cells. The new use of Wang-Landau could lead to a better understanding of the controlling mechanisms behind protein folding.

“Our goal is to present the methodology in a clear, self-consistent way, accessible to any scientist with knowledge of Monte Carlo simulations,” said David Landau, distinguished research professor of physics at the University of Georgia and director of the Center for Simulational Physics.

The research was just published in The Journal of Chemical Physics. Authors of the paper are Clare Gervais and Thomas Wüst, formerly of UGA and now employed in Switzerland; Landau, and Ying Xu, Regents-Georgia Research Alliance Eminent Scholar and professor of bioinformatics and computational biology, also at UGA. The research was supported by grants from the National Institutes of Health and the National Science Foundation. Landau and Xu are in UGA’s Franklin College of Arts and Sciences.

“This work demonstrates the power and potential of combining expertise from computational physics and computational biology in solving challenging biological problems,” said Xu.

Monte Carlo simulations—the use of algorithms with repeated random samplings to produce reliable predictions—have been around for some decades but have been steadily refined. These simulations are useful for extremely complex problems with multiple variables, and though they often require considerable computer “brain power,” they are able to give scientists startlingly accurate predictions of how biological processes work.

In the current paper, the research team developed a two-step Monte Carlo procedure to investigate, for glycophorin A (GpA), an important biochemical process called dimerization. (A dimer in biology or chemistry consists of two structurally similar units that are held together by intra- or intermolecular forces.)

“One particularly promising approach is to investigate the thermodynamics of protein folding through examining the energy landscape,” Landau explained. “By doing this, we can learn about the characteristics of proteins including possible folding pathways and folding intermediates. Thus, it allows us to bridge the gap between statistical and experimental results.”

Unfortunately, so much is happening physically and biochemically as proteins fold into their functional shapes (called the native state) that the problems must be broken down one by one and studied. That led the team to a question: Could they use a Monte Carlo Simulation along with the Wang-Landau algorithm to discover an efficient simulation method capable of sampling the energy density states that allow such folding?

Perhaps remarkably, they did. The first step in studying the dimerization process was to estimate those states in GpA using Wang-Landau. The second step was to sample various energy and structural “observables” of the system to provide insights into the thermodynamics of the entire system.

The results could be broadly applied to many fields of protein-folding studies that are important to understanding—and treating—certain diseases. (Wang-Landau, named for David Landau and Fugao Wang, is a Monte Carlo algorithm that has proved to be useful in studying a variety of physical systems. Wang was a doctoral student at UGA and now works for the Intel Corp.)

GpA is a 131-amino acid protein that spans the human red-blood cell membrane and is crucial in cell procedures. Because it has been studied in depth for many years, it also serves as an important model system for how similar systems work. That’s why the new simulation may open doors in many other areas of inquiry.

“The main advantage of this two-step approach lies in its flexibility as well as its generality,” said Landau. “This method is widely applicable to any study of biological systems, such as the folding process of soluble proteins, polymers, DNA or protein complexes. Therefore, it is an excellent alternative to other simulation methods used traditionally in the field of protein-folding thermodynamics.”

In the current study, the team discovered something generally important about membrane proteins in general, too. They found that unlike some proteins for which folding is mainly governed by their attraction to or repulsion by water, the process in GpA is driven by a subtle interplay between multiple types of interactions.

David Landau | EurekAlert!
Further information:
http://www.uga.edu

More articles from Physics and Astronomy:

nachricht Significantly more productivity in USP lasers
06.12.2016 | Fraunhofer-Institut für Lasertechnik ILT

nachricht Shape matters when light meets atom
05.12.2016 | Centre for Quantum Technologies at the National University of Singapore

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NTU scientists build new ultrasound device using 3-D printing technology

07.12.2016 | Health and Medicine

The balancing act: An enzyme that links endocytosis to membrane recycling

07.12.2016 | Life Sciences

How to turn white fat brown

07.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>