Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Computer hackers R.I.P. -- making quantum cryptography practical

04.05.2009
Quantum cryptography, a completely secure means of communication, is much closer to being used practically as researchers from Toshiba and Cambridge University's Cavendish Laboratory have now developed high speed detectors capable of receiving information with much higher key rates, thereby able to receive more information faster.

Published as part of IOP Publishing's New Journal of Physics' Focus Issue on 'Quantum Cryptography: Theory and Practice', the journal paper, 'Practical gigahertz quantum key distribution based on avalanche photodiodes', details how quantum communication can be made possible without having to use cryogenic cooling and/or complicated optical setups, making it much more likely to become commercially viable soon.

One of the first practical applications to emerge from advances in the often baffling study of quantum mechanics, quantum cryptography has become the soon-to-be-reached gold standard in secure communications.

Quantum mechanics describes the fundamental nature of matter at the atomic level and offers very intriguing, often counter-intuitive, explanations to help us understand the building blocks that construct the world around us. Quantum cryptography uses the quantum mechanical behaviour of photons, the fundamental particles of light, to enable highly secure transmission of data beyond that achievable by classical encryption.

The photons themselves are used to distribute keys that enable access to encrypted information, such as a confidential video file that, say, a bank wishes to keep completely confidential, which can be sent along practical communication lines, made of fibre optics. Quantum indeterminacy, the quantum mechanics dictum which states that measuring an unknown quantum state will change it, means that the key information cannot be accessed by a third party without corrupting it beyond recovery and therefore making the act of hacking futile.

While other detectors can offer a key rate close to that reported in this journal paper, the present advance only relies on practical components for high speed photon detection, which has previously required either cryogenic cooling or highly technical optical setups, to make quantum key distribution much more user-friendly.

Using an attenuated (weakened) laser as a light source and a compact detector (semiconductor avalanche photodiodes), the researchers have introduced a decoy protocol for guarding against intruder attacks that would confuse with erroneous information all but the sophisticated, compact detector developed by the researchers.

As the researchers write, "With the present advances, we believe quantum key distribution is now practical for realising high band-width information-theoretically secure communication."

Governments, banks and large businesses who fear the leaking of sensitive information will, no doubt, be watching closely.

Joe Winters | EurekAlert!
Further information:
http://www.iop.org

More articles from Physics and Astronomy:

nachricht New thruster design increases efficiency for future spaceflight
16.08.2017 | American Institute of Physics

nachricht Tracking a solar eruption through the solar system
16.08.2017 | American Geophysical Union

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

Im Focus: Scientists improve forecast of increasing hazard on Ecuadorian volcano

Researchers from the University of Miami (UM) Rosenstiel School of Marine and Atmospheric Science, the Italian Space Agency (ASI), and the Instituto Geofisico--Escuela Politecnica Nacional (IGEPN) of Ecuador, showed an increasing volcanic danger on Cotopaxi in Ecuador using a powerful technique known as Interferometric Synthetic Aperture Radar (InSAR).

The Andes region in which Cotopaxi volcano is located is known to contain some of the world's most serious volcanic hazard. A mid- to large-size eruption has...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

New thruster design increases efficiency for future spaceflight

16.08.2017 | Physics and Astronomy

Transporting spin: A graphene and boron nitride heterostructure creates large spin signals

16.08.2017 | Materials Sciences

A new method for the 3-D printing of living tissues

16.08.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>