Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Computer code gives astrophysicists first full simulation of star's final hours

25.09.2009
The precise conditions inside a white dwarf star in the hours leading up to its explosive end as a Type Ia supernova are one of the mysteries confronting astrophysicists studying these massive stellar explosions.

But now, a team of researchers, composed of three applied mathematicians at the U.S. Department of Energy's (DOE) Lawrence Berkeley National Laboratory and two astrophysicists, has created the first full-star simulation of the hours preceding the largest thermonuclear explosions in the universe.

In a paper to be published in the October issue of Astrophysical Journal, Ann Almgren, John Bell and Andy Nonaka of Berkeley Lab's Computational Research Division, with Mike Zingale of Stony Brook University and Stan Woosley of University of California, Santa Cruz, describe the first-ever three-dimensional, full-star simulations of convection in a white dwarf leading up to ignition of a Type Ia supernova. The project was funded by the DOE Office of Science.

Type Ia supernovae are of particular interest to astrophysicists as they are all believed to be surprisingly similar to each other, leading to their use as "standard candles" which scientists use to measure the expansion of the universe. Based on observations of these massive stellar explosions—a single supernova is as bright as an entire galaxy—scientists believe our universe is expanding at an accelerating rate. But what if Type Ia supernovae have not always exploded in the same way? What if they aren't standard?

"We're trying to understand something very fundamental, which is how these stars blow up, but it has implications for the fate of the universe," Almgren said.

The problem is that astrophysicists still don't know exactly how a star of this type explodes. Over the years, several simulations have tried to answer the problem, but the traditional methods and available supercomputing power haven't been up to the task.

"Few have tackled this problem before because it was considered intractable," said Almgren. "We needed to simulate the conditions for hours, not just a few seconds. We are now doing calculations that weren't possible before."

For the past three years, Almgren, Bell and Nonaka, along with their collaborators, have been developing a simulation code known as MAESTRO. The code simulates the flow of mass and heat throughout the star over time, and requires supercomputers to model the entire star.

It's unique in that it is intended for processes that occur at speeds much lower than the speed of sound, which allows the simulation to produce detailed results using much less supercomputing time than traditional codes. What makes MAESTRO's approach different from the traditional methods is that the sound waves have been stripped out, which allows the code to run much more efficiently.

The team ran their simulations on Jaguar, a Cray XT4 supercomputer at the Oak Ridge Leadership Computing Facility in Tennessee, using an allocation under DOE's Innovative and Novel Computational Impact on Theory and Experiment (INCITE) program.

"The INCITE allocation on Jaguar was crucial in enabling the successful runs leading to these groundbreaking results," said Woosley, leader of the SciDAC supernova project, which has fostered successful collaborations like this one between applied mathematicians and astrophysicists. "And the continuing support of the Department of Energy Office of Science is critical to advancing our research."

The simulation provided a valuable glimpse into the end of a process that started several billion years ago. A Type Ia supernova begins as a white dwarf, the compact remnant of a low-mass star that never got hot enough to fuse its carbon and oxygen. But if another star is near enough, the white dwarf may start taking on mass ("accreting") from its neighbor until it reaches a critical limit, known as the Chandrasekhar mass. Eventually, enough heat and pressure build up and the star begins to simmer, a process that lasts several centuries. During this simmering phase, fluid near the center of the star becomes hotter and more buoyant, and the buoyancy-driven convection "floats" the heat away from the center. During the final few hours, the convection can't move the heat away from the center fast enough, and the star gets hotter, faster. The fluid flow becomes stronger and more turbulent, but even so, at some point or points in the star, the temperature finally reaches about 1,000,000,000 degrees Kelvin ( about 1.8 billion degrees F), and ignites. A burning front then moves through the star, slowly at first, but gaining speed as it goes. From ignition to explosion is only a matter of seconds.

The team's simulations show that at the early stages, the motion of the fluid appears as random swirls. But as the heating in the center of the star increases, the convective flow clearly moves into the star's core on one side and out the other, a pattern known as a dipole. But the flow also becomes increasingly turbulent, with the orientation of the dipole bouncing around inside the star. While others have also seen this dipole pattern, the simulations using MAESTRO are the first to have captured the full star in three dimensions.

This, according to the paper written by the team, could be a critical piece in our understanding of how the final explosion happens. "As calculations have become more sophisticated, it has only become more clear that the outcome of the explosion is extremely sensitive to exactly how the burning fronts are initiated."

"As seen from the wide range of explosion outcomes in the literature, realistic initial conditions are a critical part of SNe Ia modeling. Only simulations of this convective phase can yield the number, size, and distribution of the initial hot spots that seed the flame," the team wrote in their paper. "Additionally, the initial turbulent velocities in the star are at least as large as the flame speed, so accurately representing this initial flow may be an important component to explosion models."

Almgren and Nonaka caution against reading too much into results from a single calculation. While the work described in this paper—their fourth in the Astrophysical Journal about MAESTRO—is an important step towards understanding this problem, more work is needed to be confident in the results. "We need to explore the effects of rotation, of resolution, and of different initial compositions of the star," says Zingale. "But with MAESTRO now up and running on today's fastest supercomputers, we are well on our way."

For more information about MAESTRO, go to: https://ccse.lbl.gov/Research/MAESTRO/

For more information about the SciDAC Computational Astrophysics Consortium, visit: http://www.scidac.gov/physics/grb.html

About CRD and Berkeley Lab
The Computational Research Division (CRD) creates computational tools and techniques that enable scientific breakthroughs by conducting applied research and development in computer science, computational science and applied mathematics.

Berkeley Lab is a U.S. Department of Energy national laboratory located in Berkeley, California. It conducts unclassified scientific research and is managed by the University of California for the DOE Office of Science.

Jon Bashor | EurekAlert!
Further information:
http://www.lbl.gov

More articles from Physics and Astronomy:

nachricht Applicability of dynamic facilitation theory to binary hard disk systems
08.12.2016 | Nagoya Institute of Technology

nachricht Will Earth still exist 5 billion years from now?
08.12.2016 | KU Leuven

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Closing the carbon loop

08.12.2016 | Life Sciences

Applicability of dynamic facilitation theory to binary hard disk systems

08.12.2016 | Physics and Astronomy

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>