Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Complex Gas Motion in the Centre of the Milky Way

14.07.2017

Heidelberg and Oxford researchers use comprehensive model to simulate this motion

How does the gas in the centre of the Milky Way behave? Researchers from Heidelberg University, in collaboration with colleagues from the University of Oxford, recently investigated the motion of gas clouds in a comprehensive computer simulation.


Source: ESA/Hubble & NASA. Acknowledgements: G. Chapdelaine, L. Limatola, and R. Gendler

Spiral galaxy Messier 61, picture taken with the Hubble Space Telescope. Our Milky Way might look like this galaxy.


Source: Matthew Ridley

The figure shows the results of the simulation of the flow of gas at the centre of the Galaxy. The spiral structure in the innermost region and the two arms are easily identifiable.

The new model finally makes it possible to conclusively explain this complex gas motion. Astrophysicists Dr Mattia C. Sormani (Heidelberg) and Matthew Ridley (Oxford) conducted the research, on Heidelberg’s part, at the Collaborative Research Centre "The Milky Way System" (CRC 881).

Our solar system is located in the outer regions of the Milky Way, a disk-shaped galaxy with an approximate diameter of 100,000 light years. From the earth, its appearance can only be observed indirectly, by measuring positions and movements of stars and gas clouds. The Milky Way is most likely a barred spiral galaxy, a very commonly observed type of galaxy in the universe. A well-known example is the galaxy M61.

In addition to the luminous stars, a substantial portion of the visible matter in our Milky Way is interstellar gas. The distribution and motion of this gas is very complex. Especially in the centre of the Galaxy, there are substantial discrepancies between the measured quantities of gas and the low rate of star formation.

"Our simulation not only eliminates these discrepancies found in previous models, but also allows us to reproduce the observed motion of the gas surprisingly well," says Prof. Dr Ralf S. Klessen, one of the researchers at the Institute of Theoretical Astrophysics at the Centre for Astronomy of Heidelberg University (ZAH).

In the new model, gas clouds in the so-called central molecular zone (CMZ) – the innermost 1,500 light years of the Milky Way – move on an elliptical central disk that has two spiral arms. Gas from the surroundings flows through these arms into the CMZ. Collisions of gas clouds create shock waves, generating turbulence. "This turbulence could prevent the gas clouds from collapsing into stars, providing a consistent explanation for the unexpectedly low rate of star formation in this region," says Dr Sormani.

The computer simulation allowed the researchers to create a spatial image of the centre of the Galaxy and determine the position of some known gas clouds within this three-dimensional "map" for the first time. The astrophysicists now plan to optimise their simulation in order to improve their results and better match observational data. They also hope to clear up any remaining questions such as the pronounced asymmetry of the gas distribution in the central zone of the Milky Way. Further simulations, based on the temporal development of the chemical composition of the gas, are intended to unravel this mystery.

"We believe that these findings will have a major impact on future studies on the structure of our Galaxy," emphasises Prof. Klessen. The research results were published in the "Monthly Notices of the Royal Astronomical Society".
Internet Information:

Original Publication:
M.G.L. Ridley, M.C. Sormani, R.G. Treß, J. Magorrian, R.S. Klessen: Nuclear spirals in the inner Milky Way. Monthly Notices of the Royal Astronomical Society (2017) 469 (2): 2251-2262, doi: 10.1093/mnras/stx944

Contact:
Dr Renate Hubele
Collaborative Research Centre "The Milky Way System" (CRC 881)
Phone +49 6221 528-291
hubele@hda-hd.de

Communications and Marketing
Press Office, phone +49 6221 54-2311
presse@rektorat.uni-heidelberg.de

Weitere Informationen:

http://sfb881.zah.uni-heidelberg.de
http://www.uni-heidelberg.de/presse/news2017/pm20170713_milchstrasse_en.html

Marietta Fuhrmann-Koch | idw - Informationsdienst Wissenschaft

Further reports about: CRC Galaxy Milky Way computer simulation gas clouds spiral galaxy star formation

More articles from Physics and Astronomy:

nachricht Tiny lasers from a gallery of whispers
20.09.2017 | American Institute of Physics

nachricht New quantum phenomena in graphene superlattices
19.09.2017 | Graphene Flagship

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

Im Focus: Silencing bacteria

HZI researchers pave the way for new agents that render hospital pathogens mute

Pathogenic bacteria are becoming resistant to common antibiotics to an ever increasing degree. One of the most difficult germs is Pseudomonas aeruginosa, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Molecular Force Sensors

20.09.2017 | Life Sciences

Producing electricity during flight

20.09.2017 | Power and Electrical Engineering

Tiny lasers from a gallery of whispers

20.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>