Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Communication in an Indirect Way

06.03.2013
Organic materials are comparatively poor conductors of electricity. Under certain conditions, however, this can change significantly. University of Würzburg physicists have now experimentally determined how exactly such a change in conductivity works in a two-dimensional layer.

Organic semiconductor materials have numerous advantages: They are inexpensive to synthesize in large quantities, easy to process, mechanically flexible and resource-efficient.


If a monolayer of organic molecules is deposited on a metal substrate, the conductivity of the organic material is significantly enhanced – as University of Würzburg physicists have just found out.
Graphics Peter Puschnig, Michael Wießner

However, their large-scale use in technological applications, such as optoelectronic components, is hampered by the fact that they generally conduct electric current rather poorly. But their conductivity can increase significantly in special conditions. Together with scientists from Graz and Hiroshima, University of Würzburg physicists have now clarified the reason why this is possible. Their research is reported in the current issue of the journal Nature Communications.

The experiment

"If organic molecules are deposited on a metal surface, the direct bond between these molecules is usually relatively weak," Achim Schöll explains. "The individual molecules mainly interact with their substrate instead." Schöll, a private lecturer at the Department for Experimental Physics VII of the University of Würzburg, has been spending many years of research on molecules that might be used in organic semiconductor electronics. In his latest experiments, he was able to show that the rule about the weak intermolecular interaction does not always apply.

For this purpose, the physicists deposited an ordered one-molecule-thick monolayer of organic molecules on a metal substrate in an ultrahigh vacuum. "Thus, we virtually created a two-dimensional semiconductor, in which the arrangement of the molecules is determined by the metal substrate," Schöll describes the method. When arranged in this way, the organic molecules exhibit quite unusual behavior.

The results

"We have verified that the electrons of the organic molecules now make contact with neighboring molecules – which process is mediated by the metal substrate," Schöll explains. In other words: The electron clouds of neighboring molecules assume a shared state, in which the metal is also involved. This facilitates the exchange of charge carriers, thus enhancing the conductivity of the organic material. What makes the results so fascinating is the fact that the molecules "communicate" with each other only indirectly by way of the metal substrate, as Schöll points out.

When conducting their measurements, the physicists came across another phenomenon as well: "The magnitude of this communication is highly direction-dependent," Schöll notes. This means that the two-dimensional layer of molecules is able to transfer charge carriers relatively easily in one specific direction whereas charge transport is significantly reduced in other directions. This is due to the internal structure of the molecules and their special arrangement on the metal substrate.
High degree of technological sophistication

The specimens used by the Würzburg physicists look like fingernail-sized metal disks. There is more to them than meets the eye, though, their preparation and examination involving a high degree of technological sophistication. In order to create layers of sufficient purity and order, for instance, you need a so-called ultrahigh vacuum, an extreme vacuum where the residual gas atoms are few and far between. In such a vacuum chamber, the pressure does not exceed 10 to the power of -10 millibar, which is below the pressure in near-earth space.

High tech equipment is also used to trace the behavior of the electrons in the specimen – the relevant method is called angle resolved photoelectron spectroscopy. An electron storage ring, i.e. a type of particle accelerator, producing so-called synchrotron radiation, serves as a source of UV radiation, which enables the researchers to take a look into the nanoworld.

The next steps

"This work is basic research in the field of nanoanalytics," says Schöll. For any future applications, however, it is essential to comprehend the complex interactions between organic molecules and the metal substrate. With their publication in Nature Communications, the researchers have by no means exhausted this topic. In further experiments, Schöll now intends to explore how a combination of various molecules, another substrate and a different arrangement of the molecules impact on the behavior of the electrons. The results from these experiments might be used to produce tailored two-dimensional networks with special electronic properties.

Substrate-mediated band-dispersion of adsorbate molecular states. M. Wießner, J. Ziroff, F. Forster, M. Arita, K. Shimada, P. Puschnig, A. Schöll & F. Reinert. Nature Communications, DOI: 10.1038/ncomms2522

Contact person
PD Dr. Achim Schöll, T: (0931) 31-85127, achim.schoell@physik.uni-wuerzburg.de

Gunnar Bartsch | Uni Würzburg
Further information:
http://www.uni-wuerzburg.de

More articles from Physics and Astronomy:

nachricht Writing and deleting magnets with lasers
19.04.2018 | Helmholtz-Zentrum Dresden-Rossendorf

nachricht Ultrafast electron oscillation and dephasing monitored by attosecond light source
19.04.2018 | Yokohama National University

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

Im Focus: The Future of Ultrafast Solid-State Physics

In an article that appears in the journal “Review of Modern Physics”, researchers at the Laboratory for Attosecond Physics (LAP) assess the current state of the field of ultrafast physics and consider its implications for future technologies.

Physicists can now control light in both time and space with hitherto unimagined precision. This is particularly true for the ability to generate ultrashort...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Diamond-like carbon is formed differently to what was believed -- machine learning enables development of new model

19.04.2018 | Materials Sciences

Electromagnetic wizardry: Wireless power transfer enhanced by backward signal

19.04.2018 | Physics and Astronomy

Ultrafast electron oscillation and dephasing monitored by attosecond light source

19.04.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>