Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


We Saw It Coming: Asteroid Monitored from Outer Space to Ground Impact

An international research team has been able to identify an asteroid in space before it entered Earth’s atmosphere, enabling computers to determine its area of origin in the solar system as well as predict the arrival time and location on Earth of its shattered surviving parts.

Reports by scientists of meteorites striking Earth in the past have resembled police reports of so many muggings — the offenders came out of nowhere and then disappeared into the crowd, making it difficult to get more than very basic facts.

Now an international research team has been able to identify an asteroid in space before it entered Earth’s atmosphere, enabling computers to determine its area of origin in the solar system as well as predict the arrival time and location on Earth of its shattered surviving parts.

“I would say that this work demonstrates, for the first time, the ability of astronomers to discover and predict the impact of a space object,” says Sandia National Laboratories researcher Mark Boslough, a member of the research team.

Perhaps more importantly, the event tested the ability of society to respond very quickly to a predicted impact, says Boslough. “In this case, it was never a threat, so the response was scientific. Had it been deemed a threat — a larger asteroid that would explode over a populated area — an alert could have been issued in time that could potentially save lives by evacuating the danger zone or instructing people to take cover.”

The profusion of information in this case also helps meteoriticists learn the orbits of parent bodies that yield various types of meteorites.

Such knowledge could help future space missions explore or even mine the asteroids in Earth-crossing orbits, Boslough says.

The four-meter-diameter asteroid, called 2008 TC3, was initially sighted by the automated Catalina Sky Survey telescope at Mount Lemmon, Ariz., on Oct. 6. Numerous observatories, alerted to the invader, then imaged the object. Computations correctly predicted impact would occur 19 hours after discovery in the Nubian Desert of northern Sudan.

According to NASA’s Near Earth Object program, “A spectacular fireball lit up the predawn sky above Northern Sudan on October 7, 2008.”

A wide variety of analyses were performed while the asteroid was en route and after its surviving pieces were located by meteorite hunters in an intense search.

Researchers, listed in the paper describing this work in the March 26 issue of the journal Nature, range from the SETI Institute, the University of Khartoum, Juba University (Sudan), Sandia, Caltech, NASA Johnson Space Center and NASA Ames, to other universities in the U.S., Canada, Ireland, England, Czech Republic and the Netherlands.

Sandia researcher Dick Spalding interpreted recorded data about the atmospheric fireball, and Boslough estimated the aerodynamic pressure and strength of the asteroid based on the estimated burst altitude of 36 kilometers.

Searchers have recovered 47 meteorites so far — offshoots from the disintegrating asteroid, mostly immolated by its encounter with atmospheric friction — with a total mass of 3.95 kilograms.

The analyzed material showed carbon-rich materials not yet represented in meteorite collections, indicating that fragile materials still unknown may account for some asteroid classes. Such meteorites are less likely to survive due to destruction upon entry and weathering once they land on Earth’s surface.

“Chunks of iron and hard rock last longer and are easier to find than clumps of soft carbonaceous materials,” says Boslough.

“We knew that locating an incoming object while still in space could be done, but it had never actually been demonstrated until now,” says Boslough. “In this post-rational age where scientific explanations and computer models are often derided as ‘only theories,’ it is nice to have a demonstration like this.”

Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin company, for the U.S. Department of Energy’s National Nuclear Security Administration. With main facilities in Albuquerque, N.M., and Livermore, Calif., Sandia has major R&D responsibilities in national security, energy and environmental technologies, and economic competitiveness.

Neal Singer | Newswise Science News
Further information:

More articles from Physics and Astronomy:

nachricht First results of NSTX-U research operations
26.10.2016 | DOE/Princeton Plasma Physics Laboratory

nachricht Scientists discover particles similar to Majorana fermions
25.10.2016 | Chinese Academy of Sciences Headquarters

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

VDI presents International Bionic Award of the Schauenburg Foundation

26.10.2016 | Awards Funding

3-D-printed magnets

26.10.2016 | Power and Electrical Engineering

Advanced analysis of brain structure shape may track progression to Alzheimer's disease

26.10.2016 | Health and Medicine

More VideoLinks >>>