Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

We Saw It Coming: Asteroid Monitored from Outer Space to Ground Impact

27.03.2009
An international research team has been able to identify an asteroid in space before it entered Earth’s atmosphere, enabling computers to determine its area of origin in the solar system as well as predict the arrival time and location on Earth of its shattered surviving parts.

Reports by scientists of meteorites striking Earth in the past have resembled police reports of so many muggings — the offenders came out of nowhere and then disappeared into the crowd, making it difficult to get more than very basic facts.

Now an international research team has been able to identify an asteroid in space before it entered Earth’s atmosphere, enabling computers to determine its area of origin in the solar system as well as predict the arrival time and location on Earth of its shattered surviving parts.

“I would say that this work demonstrates, for the first time, the ability of astronomers to discover and predict the impact of a space object,” says Sandia National Laboratories researcher Mark Boslough, a member of the research team.

Perhaps more importantly, the event tested the ability of society to respond very quickly to a predicted impact, says Boslough. “In this case, it was never a threat, so the response was scientific. Had it been deemed a threat — a larger asteroid that would explode over a populated area — an alert could have been issued in time that could potentially save lives by evacuating the danger zone or instructing people to take cover.”

The profusion of information in this case also helps meteoriticists learn the orbits of parent bodies that yield various types of meteorites.

Such knowledge could help future space missions explore or even mine the asteroids in Earth-crossing orbits, Boslough says.

The four-meter-diameter asteroid, called 2008 TC3, was initially sighted by the automated Catalina Sky Survey telescope at Mount Lemmon, Ariz., on Oct. 6. Numerous observatories, alerted to the invader, then imaged the object. Computations correctly predicted impact would occur 19 hours after discovery in the Nubian Desert of northern Sudan.

According to NASA’s Near Earth Object program, “A spectacular fireball lit up the predawn sky above Northern Sudan on October 7, 2008.”

A wide variety of analyses were performed while the asteroid was en route and after its surviving pieces were located by meteorite hunters in an intense search.

Researchers, listed in the paper describing this work in the March 26 issue of the journal Nature, range from the SETI Institute, the University of Khartoum, Juba University (Sudan), Sandia, Caltech, NASA Johnson Space Center and NASA Ames, to other universities in the U.S., Canada, Ireland, England, Czech Republic and the Netherlands.

Sandia researcher Dick Spalding interpreted recorded data about the atmospheric fireball, and Boslough estimated the aerodynamic pressure and strength of the asteroid based on the estimated burst altitude of 36 kilometers.

Searchers have recovered 47 meteorites so far — offshoots from the disintegrating asteroid, mostly immolated by its encounter with atmospheric friction — with a total mass of 3.95 kilograms.

The analyzed material showed carbon-rich materials not yet represented in meteorite collections, indicating that fragile materials still unknown may account for some asteroid classes. Such meteorites are less likely to survive due to destruction upon entry and weathering once they land on Earth’s surface.

“Chunks of iron and hard rock last longer and are easier to find than clumps of soft carbonaceous materials,” says Boslough.

“We knew that locating an incoming object while still in space could be done, but it had never actually been demonstrated until now,” says Boslough. “In this post-rational age where scientific explanations and computer models are often derided as ‘only theories,’ it is nice to have a demonstration like this.”

Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin company, for the U.S. Department of Energy’s National Nuclear Security Administration. With main facilities in Albuquerque, N.M., and Livermore, Calif., Sandia has major R&D responsibilities in national security, energy and environmental technologies, and economic competitiveness.

Neal Singer | Newswise Science News
Further information:
http://www.sandia.gov
http://www.sandia.gov/news/resources/releases/2009/asteroid.html

More articles from Physics and Astronomy:

nachricht NASA's SDO sees partial eclipse in space
29.05.2017 | NASA/Goddard Space Flight Center

nachricht Strathclyde-led research develops world's highest gain high-power laser amplifier
29.05.2017 | University of Strathclyde

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Strathclyde-led research develops world's highest gain high-power laser amplifier

The world's highest gain high power laser amplifier - by many orders of magnitude - has been developed in research led at the University of Strathclyde.

The researchers demonstrated the feasibility of using plasma to amplify short laser pulses of picojoule-level energy up to 100 millijoules, which is a 'gain'...

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

New insights into the ancestors of all complex life

29.05.2017 | Earth Sciences

New photocatalyst speeds up the conversion of carbon dioxide into chemical resources

29.05.2017 | Life Sciences

NASA's SDO sees partial eclipse in space

29.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>