Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

From the comfort of home, Web users may have found new planets

22.09.2011
Since the online citizen science project Planet Hunters launched last December, 40,000 web users from around the world have been helping professional astronomers analyze the light from 150,000 stars in the hopes of discovering Earth-like planets orbiting around them.

Users analyze real scientific data collected by NASA's Kepler mission, which has been searching for planets beyond our own solar system — called exoplanets — since its launch in March 2009.

Now astronomers at Yale University have announced the discovery of the first two potential exoplanets discovered by Planet Hunters users in a new study to be published in the Monthly Notices of the Royal Astronomical Society.

"This is the first time that the public has used data from a NASA space mission to detect possible planets orbiting other stars," said Yale astronomer and exoplanet expert Debra Fischer, who helped launch the Planet Hunters project.

The candidate planets orbit their host stars with periods ranging from 10 to 50 days – much shorter than the 365 days it takes the Earth to orbit the Sun – and have radii that range in size from two-and-a-half to eight times Earth's radius. Despite those differences, one of the two candidates could be a rocky planet similar to the size of the Earth (as opposed to a giant gas planet like Jupiter), although they aren't in the so-called "habitable zone" where liquid water, and therefore life as we know it, could exist.

Next, the Planet Hunters team— a collaboration between astronomers at Yale, the University of Oxford and the Adler Planetarium in Chicago— used the Keck Observatory in Hawaii to analyze the host stars. "I think there's a 95 percent chance or greater that these are bona fide planets," Fischer said.

The Kepler team has already announced the discovery of 1200 exoplanet candidates and will follow up on the highest potential ones with further analysis, but they had discarded the two found by Planet Hunters users for various technical reasons that led them to believe they weren't promising candidates.

"These three candidates might have gone undetected without Planet Hunters and its citizen scientists," said Meg Schwamb, a Yale researcher and Planet Hunters co-founder. "Obviously Planet Hunters doesn't replace the analysis being done by the Kepler team. But it has proven itself to be a valuable tool in the search for other worlds."

Users found the two candidates in the first month of Planet Hunters operations using data the Kepler mission made publicly available. The Planet Hunters team sent the top 10 candidates found by the citizen scientists to the Kepler team, who analyzed the data and determined that two of the 10 met their criteria for being classified as planet candidates. The two candidates were flagged as potential planets by several dozen different Planet Hunters users, as the same data are analyzed by more than one user.

"Scientists on the Kepler team obtained the data, but the public helped finance the project with their tax dollars," Fischer said. "It's only right that this data has been pushed back into the public domain, not just as scientifically digested results but in a form where the public can actively participate in the hunt. The space program is a national treasure—a monument to America's curiosity about the Universe. It is such an exciting time to be alive and to see these incredible discoveries being made."

Planet Hunters users are now sifting through the next 90 days of Kepler data in the hopes of adding to the count. "This is what we found after just a preliminary glance through the first round of Kepler data," Fischer said. "There's no doubt that, with each new round of data, there will be more discoveries to come."

Learn more about Planet Hunters at www.planethunters.org

Watch a video of Planet Hunters co-founders Debra Fischer and Kevin Schawinski explaining the project at http://www.youtube.com/user/YaleUniversity#p/search/0/18NCx-iBHBQ

Other authors of the paper include Kevin Schawinski, John Brewer, Matt Giguere, Julien Spronck, Michele Beleu, Zak Kaplan, Nick vanNispen and Charlie Sharzer (Yale University); Chris Lintott and Arfon Smith (University of Oxford and Adler Planetarium); Stuart Lynn and Robert Simpson (University of Oxford); Thibault Sartori (Yale University and Ecole normale superieure); Natalie Batalha (San Jose State University); Jason Rowe, Steve Bryson and Peter Tenenbaum (NASA Ames Research Center); Jon Jenkins (SETI Institute/NASA Ames Research Center); Andrej Prsa (Villanova University); Justin Crepp, John Johnson and Tim Morton (California Institute of Technology); and Andrew Howard (University of California, Berkeley).

Citation: Monthly Notices of the Royal Astronomical Society (2011)

Karen N. Peart | EurekAlert!
Further information:
http://www.yale.edu

More articles from Physics and Astronomy:

nachricht NASA laser communications to provide Orion faster connections
30.03.2017 | NASA/Goddard Space Flight Center

nachricht Pinball at the atomic level
30.03.2017 | Max-Planck-Institut für Struktur und Dynamik der Materie

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

NASA laser communications to provide Orion faster connections

30.03.2017 | Physics and Astronomy

Reusable carbon nanotubes could be the water filter of the future, says RIT study

30.03.2017 | Studies and Analyses

Unique genome architectures after fertilisation in single-cell embryos

30.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>