Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Comets Forge Organic Molecules in Their Dusty Atmospheres, ALMA Confirms

13.08.2014

An international team of scientists using the Atacama Large Millimeter/submillimeter Array (ALMA) has made incredible 3D images of the ghostly atmospheres surrounding comets ISON and Lemmon. These new observations provided important insights into how and where comets forge new chemicals, including intriguing organic compounds.

Comets contain some of the oldest and most pristine materials in our Solar System. Understanding their unique chemistry could reveal much about the birth of our planet and the origin of organic compounds that are the building blocks of life. ALMA's high-resolution observations provided a tantalizing 3D perspective of the distribution of the molecules within these two cometary atmospheres, or comas.


Credit: B. Saxton (NRAO/AUI/NSF); NASA/ESA Hubble; M. Cordiner, NASA, et al.

Approximate location of Comet ISON in our Solar System at the time of the ALMA observations.


Visualization by Brian Kent (NRAO/AUI/NSF)

This rotating 3-D ALMA map shows how HCN molecules (made of one hydrogen, one carbon and one nitrogen) are released from the nucleus of comet Lemmon and then spread evenly throughout the atmosphere, or coma. But, similar maps revealed that HNC and formaldehyde are produced in the coma, rather than originating from the comet's nucleus.

“We achieved truly first-of-a-kind mapping of important molecules that help us understand the nature of comets,” said team leader Martin Cordiner, a Catholic University of America astrochemist working at NASA’s Goddard Space Flight Center in Greenbelt, Maryland.

The critical 3D component of the ALMA observations was made by combining high-resolution, two-dimensional images of the comets with high-resolution spectra obtained from three important organic molecules – hydrogen cyanide (HCN), hydrogen isocyanide (HNC), and formaldehyde (H2CO). These spectra were taken at every point in each image. They identified not only the molecules present but also their velocities, which provided the third dimension, indicating the depths of the cometary atmospheres.

The new results revealed that HCN gas flows outward from the nucleus quite evenly in all directions, whereas HNC is concentrated in clumps and jets. ALMA’s exquisite resolution could clearly resolve these clumps moving into different regions of the cometary comas on a day-to-day and even hour-to-hour basis. These distinctive patterns confirm that the HNC and H2CO molecules actually form within the coma and provide new evidence that HNC may be produced by the breakdown of large molecules or organic dust.

"Understanding organic dust is important, because such materials are more resistant to destruction during atmospheric entry, and some could have been delivered intact to the early Earth, thereby fueling the emergence of life,” said Michael Mumma, director of the Goddard Center for Astrobiology and a co-author on the study. "These observations open a new window on this poorly known component of cometary organics."

“So, not only does ALMA let us identify individual molecules in the coma, it also gives us the ability to map their locations with great sensitivity,” said Anthony Remijan, an astronomer with the National Radio Astronomy Observatory (NRAO) in Charlottesville, Virginia, and a study co-author.

The observations, published today in the Astrophysical Journal Letters, were also significant because modest comets like Lemmon and ISON contain relatively low concentrations of these crucial molecules, making them difficult to probe in depth with Earth-based telescopes. The few comprehensive studies of this kind so far have been conducted on extremely bright comets, such as Hale-Bopp. The present results extend them to comets of only moderate brightness.

Comet ISON (formally known as C/2012 S1) was observed with ALMA on November 15-17, 2013, when it was only 75 million kilometers from the Sun (about half the distance of the Earth to the Sun). Comet Lemmon (formally known as C/2012 F6) was observed on June 1-2, 2013, when it was 224 million kilometers from the Sun (about 1.5 times the distance of the Earth to the Sun).

"The high sensitivity achieved in these studies paves the way for observations of perhaps hundreds of the dimmer or more distant comets,” said Goddard’s Stefanie Milam, a study co-author. “The findings suggest that it should also be possible to map more complex molecules that have so far eluded detection in comets.”

This research was funded by the NASA Astrobiology Institute through the Goddard Center for Astrobiology and by NASA’s Planetary Atmospheres and Planetary Astronomy programs.

The Atacama Large Millimeter/submillimeter Array (ALMA), an international astronomy facility, is a partnership of Europe, North America and East Asia in cooperation with the Republic of Chile. ALMA is funded in Europe by the European Southern Observatory (ESO), in North America by the U.S. National Science Foundation (NSF) in cooperation with the National Research Council of Canada (NRC) and the National Science Council of Taiwan (NSC) and in East Asia by the National Institutes of Natural Sciences (NINS) of Japan in cooperation with the Academia Sinica (AS) in Taiwan.

Contact Information

Charles Blue
cblue@nrao.edu
Phone: 434-296-0314
Mobile: 202-236-6324

Charles Blue | newswise
Further information:
http://www.nrao.edu

Further reports about: Astrobiology Astronomy Atmospheres Molecules Observatory Organic Planetary clumps comets observations

More articles from Physics and Astronomy:

nachricht Prediction: More gas-giants will be found orbiting Sun-like stars
22.02.2017 | Carnegie Institution for Science

nachricht NASA's fermi finds possible dark matter ties in andromeda galaxy
22.02.2017 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Microhotplates for a smart gas sensor

22.02.2017 | Power and Electrical Engineering

Scientists unlock ability to generate new sensory hair cells

22.02.2017 | Life Sciences

Prediction: More gas-giants will be found orbiting Sun-like stars

22.02.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>