Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Where comets emit dust - Scientists identify the active regions on the surface of comets

27.04.2010
Studying comets can be quite dangerous - especially from close up. Because the tiny particles of dust emitted into space from the so-called active regions on a comet’s surface can damage space probes.

Scientists from the Max Planck Institute for Solar System Research in Germany have now developed a computer model that can locate these regions using only the information available from Earth. The new method could help calculate a safe flight route for ESA’s space probe Rosetta, which is scheduled to arrive at the comet Churyumov-Gerasimenko in 2014. (Astronomy & Astrophysics, 512, A60, 2010)

A comet’s nucleus is much more than an unvarying chunk of ice and dust. Under the Sun’s influence, volatile substances such as water, carbon dioxide, and carbon monoxide are emitted from certain regions on its surface - the so-called active regions - carrying dust particles with a diameter of up to a few centimetres into space. Seen from Earth, these fountains of dust can be discerned as jets or spiral arms that surround the comet (see figure 1). These structures are embedded in a sheath of gas and dust called the coma that is produced by the more uniform activity of the overall surface.

"Pictures taken from Earth show the comet and its jets as a two-dimensional projection", explains Hermann Böhnhardt from the Max Planck Institute for Solar System Research (MPS). Where exactly the dust particles and gases originate from can not therefore be well identified.

In order to localize the active regions despite this problem, the MPS-researchers chose an indirect approach that for the first time also accounts for the three dimensional shape of the comet. "Until now, computer programs trying to find the active regions assumed the comet as a sphere or ellipsoid", explains Jean-Baptiste Vincent from MPS. Since in reality comets often have quite bizarre shapes, for many applications this approach is not good enough. The researchers therefore decided to take a standard approach: While watching a comet for an entire rotation period, changes in its luminance allow its true form to be calculated.

In a next step, the researchers fed their program with an initial assumption where the active regions might be located. Additionally they made an "educated guess" concerning the physical properties of the dust particles like size and initial velocity upon emission from the nucleus. As a result, the computer simulation delivers an image as it would be seen through a telescope on Earth. By comparing this with the actual image through a telescope the model can be refined step by step until simulation and actual image agree.

Already, the new method has passed its first test: The scientists could successfully apply it to the comet Tempel 1 that was the destination of NASA’s Deep Impact Mission in 2005. "Even though ever since this mission we know where Tempel1’s active regions are, we pretended not to", explains Vincent. For their computer program the scientists only used information that was available from Earth-base observations - apart from the nucleus shape model that was adopted from the mission results.

Next, the researchers intend to calculate the active regions of the comet Churyumov-Gerasimenko, the rendezvous target for ESA's Rosetta mission on which the Rosetta lander Philae will touch down in late 2014. The mission, to which MPS contributed many scientific instruments, has been on route to its destination beyond the orbit of Mars and the asteroid belt since 2004. In the crucial phase of the mission, the new method could help to determine a safe route for Rosetta through the cometary coma and maybe even find a suitable landing site.

Original work:

J.-B. Vincent, H. Böhnhardt, and L.M. Lara
A numerical model of cometary dust coma structures - Application to comet 9P/Tempel 1

Astronomy&Astrophysics 512, A60 (2010) DOI: 10.1051/0004-6361/200913418

Contact:

Dr. Birgit Krummheuer, press office
Max Planck Institute for Solar System Research, Katlenburg-Lindau
Tel.: +49 5556 979-462 / mobile: +49 173 3958625
E-mail: Krummheuer@mps.mpg.de
Jean-Baptiste Vincent
Max Planck Institute for Solar System Research, Katlenburg-Lindau
Tel.: +49 5556 979-291
E-mail: Vincent@mps.mpg.de
Dr. Hermann Böhnhardt
Max Planck Institute for Solar System Research, Katlenburg-Lindau
Tel.: +49 5556 979-545
E-mail: Boehnhardt@mps.mpg.de

Barbara Abrell | Max-Planck-Gesellschaft
Further information:
http://www.mps.mpg.de

More articles from Physics and Astronomy:

nachricht Climate cycles may explain how running water carved Mars' surface features
02.12.2016 | Penn State

nachricht What do Netflix, Google and planetary systems have in common?
02.12.2016 | University of Toronto

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>