Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Comet Particles Provide Glimpse of Solar System’s Birth

18.11.2008
Scientists are tracking the violent convulsions in the giant cloud of gas and dust that gave birth to the solar system 4.5 billion years ago via a few tiny particles from comet Wild 2.

These convulsions flung primordial material billions of miles from the hot, inner regions of the gas cloud that later collapsed to form the sun, out into the cold, nether regions of the solar system, where they became incorporated into an icy comet.

“If you take a gas of solar composition and let it cool down, the very first minerals to solidify are calcium and aluminum-rich,” said Steven Simon, Senior Research Associate in Geophysical Sciences at the University of Chicago. And comet Wild 2 does contain these and other minerals formed at high temperatures. “That’s an indication of transport from the inner solar system to the outer solar system, where comets are thought to have formed,” he said.

Simon presents his data in the November 2008 issue (expected to be published early next year) of Meteoritics and Planetary Science. His 11 co-authors include Lawrence Grossman, Professor in Geophysical Sciences at the University of Chicago.

Either turbulence within the nebula, or a phenomenon called bipolar outflow from the early sun could account for the long-distance transport of cometary material, according to Simon and his Meteoritics co-authors.

Bipolar outflow results when the rotating disks that surround developing new stars jet gas from their polar regions, which astronomers have observed telescopically. “That’s part of the so-called X-wind model, which is somewhat controversial,” Simon said.

The controversial aspect of the X-wind model is the claim that the process would produce the kind of granules that Simon and his colleagues have now identified in comet Wild 2. Another less likely possibility: The cometary material in question may have formed around another star of composition similar to the sun, then drifted into the outer reaches of the solar system. There it became incorporated into comet Wild 2.

The extraterrestrial dust particles that Simon and his colleagues examined were among thousands that NASA’s Stardust spacecraft collected from comet Wild 2 in January 2004. Two years later, Stardust became the first mission to return samples of a comet to Earth.

Simon, Grossman and collaborators identified all three particles described in the Meteoritics study as pieces of a shattered refractory inclusion, one of the most unusual and informative materials discovered in early analyses of the Wild 2 samples. Such inclusions, found in some meteorites, formed by condensation from the gas in the solar nebula at temperatures of more than 2,500 degrees Fahrenheit early in the history of the solar system.

The three particles were named Inti, Inti-B and Inti-C, after the Incan sun god. The original, unbroken particle would have measured no more than 30 microns across, much narrower than a human hair.

As Simon, Grossman and a team of colleagues reported in 2006, Inti contains a suite of minerals that likely were forged in fiery conditions found deep inside the cloud of gas and dust that formed the sun, Earth and the planets. And yet comets probably formed in the outer reaches of the solar system, far beyond Neptune.

Contributing to an array of scientific analyses in the Meteoritics article were co-authors David Joswiak, Donald Brownlee and Graciela Matrajt of the University of Washington; Hope Ishii, John Bradley, Miaofang Chi, Jerome Aléon, Stewart Fallon and Ian Hutcheon of Lawrence Livermore National Laboratory in California; and Kevin McKeegan of the University of California, Los Angeles.

Most of this team, including Simon and Grossman, were among the 75 co-authors who published the first analysis of the comet Wild 2 particles in the Dec. 15, 2006, issue of the journal Science. A striking aspect of the Science and Meteoritics studies is the similarity in chemical composition between the Wild 2 samples and particles from carbonaceous chondrite meteorites. These meteorites contain material that has been unaltered since the birth of the solar system 4.5 billion years ago.

Equally striking is the complete lack of any water-bearing minerals in the cometary grains. Carbonaceous chondrites are rich in hydrated silicates, clay-like minerals that emit water when heated, “but there’s no hydrated silicate in the comet sample,” Grossman said.

Scientists organized the Stardust mission with the expectation that Wild 2’s samples would reveal a bonanza of exotic minerals, including debris from stars that had met their demise long before the birth of the sun. They may need to

rethink how comets formed, according to Grossman.

“Because they’re loaded with ices we’ve always thought that these are outer solar system objects,” he said. “But maybe cometary ices formed much closer in, after the inner part of the solar nebula cooled off, and incorporated the high-temperature stuff that formed earlier.”

The Stardust mission was scientifically important because comets are usually out of reach, Grossman said. And yet aside from the sun, they may be the most abundant material in the solar system. “There may be more stuff in the comets than in all the planets put together,” he said.

Steve Koppes | Newswise Science News
Further information:
http://www.uchicago.edu

Further reports about: COMET Earth GLIMPSE Geophysical Inti Meteoritics SOLAR Stardust X-wind birth particles solar system

More articles from Physics and Astronomy:

nachricht NASA's fermi finds possible dark matter ties in andromeda galaxy
22.02.2017 | NASA/Goddard Space Flight Center

nachricht Tune your radio: galaxies sing while forming stars
21.02.2017 | Max-Planck-Institut für Radioastronomie

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Positrons as a new tool for lithium ion battery research: Holes in the electrode

22.02.2017 | Power and Electrical Engineering

New insights into the information processing of motor neurons

22.02.2017 | Life Sciences

Healthy Hiking in Smart Socks

22.02.2017 | Innovative Products

VideoLinks
B2B-VideoLinks
More VideoLinks >>>