Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Comet dust reveals unexpected mixing of solar system

22.09.2008
Chemical clues from a comet's halo are challenging common views about the history and evolution of the solar system and showing it may be more mixed-up than previously thought.

A new analysis of dust from the comet Wild 2, collected in 2004 by NASA's Stardust mission, has revealed an oxygen isotope signature that suggests an unexpected mingling of rocky material between the center and edges of the solar system.

Despite the comet's birth in the icy reaches of outer space beyond Pluto, tiny crystals collected from its halo appear to have been forged in the hotter interior, much closer to the sun.

The result, reported in the Sept. 19 issue of the journal Science by researchers from Japan, NASA and the University of Wisconsin-Madison, counters the idea that the material that formed the solar system billions of years ago has remained trapped in orbits around the sun. Instead, the new study suggests that cosmic material from asteroid belts between Mars and Jupiter can migrate outward in the solar system and mix with the more primitive materials found at the fringes.

"Observations from this sample are changing our previous thinking and expectations about how the solar system formed," says UW-Madison geologist Noriko Kita, an author of the paper.

The Stardust mission captured Wild 2 dust in hopes of characterizing the raw materials from which our solar system coalesced. Since the comet formed more than 4 billion years ago from the same primitive source materials, its current orbit between Mars and Jupiter affords a rare opportunity to sample material from the farthest reaches of the solar system and dating back to the early days of the universe. These samples, which reached Earth in early 2006, are the first solid samples returned from space since Apollo.

"They were originally hoping to find the raw material that pre-dated the solar system," explains Kita. "However, we found many crystalline objects that resemble flash-heated particles found in meteorites from asteroids."

In the new study, scientists led by Tomoki Nakamura, a professor at Kyushu University in Japan, analyzed oxygen isotope compositions of three crystals from the comet's halo to better understand their origins. He and UW-Madison scientist Takayuki Ushikubo analyzed the tiny grains — the largest of which is about one-thousandth of an inch across — with a unique ion microprobe in the Wisconsin Secondary Ion Mass Spectrometer (Wisc-SIMS) laboratory, the most advanced instrument of its kind in the world.

To their surprise, they found oxygen isotope ratios in the comet crystals that are similar to asteroids and even the sun itself. Since these samples more closely resemble meteorites than the primitive, low-temperature materials expected in the outer reaches of the solar system, their analysis suggests that heat-processed particles may have been transported outward in the young solar system.

"This really complicates our simple view of the early solar system," says Michael Zolensky, a NASA cosmic mineralogist at the Johnson Space Center in Houston.

"Even though the comet itself came from way out past Pluto, there's a much more complicated history of migration patterns within the solar system and the material originally may have formed much closer to Earth," says UW-Madison geology professor John Valley. "These findings are causing a revision of theories of the history of the solar system."

Noriko Kita | EurekAlert!
Further information:
http://www.geology.wisc.edu

Further reports about: COMET Earth Jupiter Mars NASA Pluto Stardust comet crystals oxygen isotope solar system

More articles from Physics and Astronomy:

nachricht Researchers create artificial materials atom-by-atom
28.03.2017 | Aalto University

nachricht Astronomers probe swirling particles in halo of starburst galaxy
28.03.2017 | International Centre for Radio Astronomy Research

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Researchers create artificial materials atom-by-atom

28.03.2017 | Physics and Astronomy

Researchers show p300 protein may suppress leukemia in MDS patients

28.03.2017 | Health and Medicine

Asian dust providing key nutrients for California's giant sequoias

28.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>