Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Comet collisions every 6 seconds explain 17-year-old stellar mystery

09.11.2012
Every six seconds, for millions of years, comets have been colliding with one another near a star in the constellation Cetus called 49 CETI, which is visible to the naked eye.

Over the past three decades, astronomers have discovered hundreds of dusty disks around stars, but only two — 49 CETI is one — have been found that also have large amounts of gas orbiting them.

Young stars, about a million years old, have a disk of both dust and gas orbiting them, but the gas tends to dissipate within a few million years and almost always within about 10 million years. Yet 49 CETI, which is thought to be considerably older, is still being orbited by a tremendous quantity of gas in the form of carbon monoxide molecules, long after that gas should have dissipated.

"We now believe that 49 CETI is 40 million years old, and the mystery is how in the world can there be this much gas around an otherwise ordinary star that is this old," said Benjamin Zuckerman, a UCLA professor of physics and astronomy and co-author of the research, which was recently published in the Astrophysical Journal. "This is the oldest star we know of with so much gas."

Zuckerman and his co-author Inseok Song, a University of Georgia assistant professor of physics and astronomy, propose that the mysterious gas comes from a very massive disk-shaped region around 49 CETI that is similar to the sun's Kuiper Belt, which lies beyond the orbit of Neptune.

The total mass of the various objects that make up the Kuiper Belt, including the dwarf planet Pluto, is about one-tenth the mass of the Earth. But back when the Earth was forming, astronomers say, the Kuiper Belt likely had a mass that was approximately 40 times larger than the Earth's; most of that initial mass has been lost in the last 4.5 billion years.

By contrast, the Kuiper Belt analogue that orbits around 49 CETI now has a mass of about 400 Earth masses — 4,000 times the current mass of the Kuiper Belt.

"Hundreds of trillions of comets orbit around 49 CETI and one other star whose age is about 30 million years. Imagine so many trillions of comets, each the size of the UCLA campus — approximately 1 mile in diameter — orbiting around 49 CETI and bashing into one another," Zuckerman said. "These young comets likely contain more carbon monoxide than typical comets in our solar system. When they collide, the carbon monoxide escapes as a gas. The gas seen around these two stars is the result of the incredible number of collisions among these comets.

"We calculate that comets collide around these two stars about every six seconds," he said. "I was absolutely amazed when we calculated this rapid rate. I would not have dreamt it in a million years. We think these collisions have been occurring for 10 million years or so."

Using a radio telescope in the Sierra Nevada mountains of southern Spain in 1995, Zuckerman and two colleagues discovered the gas that orbits 49 CETI, but the origin of the gas had remained unexplained for 17 years, until now.

UCLA is California's largest university, with an enrollment of more than 40,000 undergraduate and graduate students. The UCLA College of Letters and Science and the university's 11 professional schools feature renowned faculty and offer 337 degree programs and majors. UCLA is a national and international leader in the breadth and quality of its academic, research, health care, cultural, continuing education and athletic programs. Six alumni and six faculty have been awarded the Nobel Prize.

For more news, visit the UCLA Newsroom and follow us on Twitter.

Stuart Wolpert | EurekAlert!
Further information:
http://www.ucla.edu

More articles from Physics and Astronomy:

nachricht Major discovery in controlling quantum states of single atoms
20.02.2018 | Institute for Basic Science

nachricht Observing and controlling ultrafast processes with attosecond resolution
20.02.2018 | Technische Universität München

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

'Lipid asymmetry' plays key role in activating immune cells

20.02.2018 | Life Sciences

MRI technique differentiates benign breast lesions from malignancies

20.02.2018 | Medical Engineering

Major discovery in controlling quantum states of single atoms

20.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>