Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Better combustion through plasma

27.11.2013
Plasma-assisted combustion could help make jets fly higher, faster and longer, according to work presented at APS Division of Fluid Dynamics Meeting

Mix together air, fuel, and heat and you get combustion, the chemical reaction that powers most engines in planes, trains and automobiles. And if you throw in some ionized gas (plasma), it turns out, you can sustain combustion even in conditions that would otherwise snuff out the reaction: at low air pressure, in high winds or when there's low fuel.

Such plasma-assisted combustion can potentially give an efficiency boost to high-performance aircraft. The technology could help military jets fly at high altitudes, passenger planes and unmanned drones cruise for long distances while conserving fuel, and supersonic jets maintain ignition at breakneck speeds that would normally suffocate flames with fast-flowing air.

Scientists know that by introducing plasma to the reaction – near or at the location where the flame ignites – new chemical species are produced that catalyze combustion. But no one knows precisely what species are involved, what the reactions are, and what their rates are. "It's not well understood at all," said Igor Adamovich of Ohio State University.

To better understand plasma-assisted combustion and to develop future technology, researchers are conducting experiments and creating computer models to determine which chemical processes are involved.

Adamovich will discuss some of his and his colleagues' recent experimental results and computer models at the meeting of the American Physical Society's Division of Fluid Dynamics, held Nov. 24 – 26 in Pittsburgh. The researchers studied reactions and reaction rates at air pressures that represent high-altitude flight and at temperatures between 200 and 400 degrees Celsius -- below ignition temperature and where data and reliable models are particularly lacking. The researchers found that for simpler fuels – such as hydrogen, methane and ethylene – the models agreed fairly well with experimental data, while for propane, the agreement was much worse.

Just over five years ago, relatively little was known about how plasma-assisted combustion works, Adamovich said. But since then, scientists have made significant progress toward identifying the mechanism behind the plasma assisted combustion chemistry. "We hope in a few years, such a mechanism might emerge," he said.

The presentation "Kinetic Modeling of Low-Temperature Plasma Assisted Combustion," is at 2:23 p.m. on Tuesday, November 26, 2013 in the David L. Lawrence Convention Center, Room 317. ABSTRACT: http://meeting.aps.org/Meeting/DFD13/Event/204268

MEETING INFORMATION

The 66th Annual Division of Fluid Dynamics Meeting will be held at David L. Lawrence Convention Center in Pittsburgh, Pennsylvania from November 24-26, 2013. More meeting information: http://www.apsdfd2013.pitt.edu

REGISTERING AS PRESS

Any credentialed journalist, full-time or freelance, may attend the conference free of charge. Please email: dfdmedia@aps.org and include "DFD Press" in the subject line. Work space will be provided on-site during the meeting and news and graphics will be hosted on the Virtual Press Room: http://www.aps.org/units/dfd/pressroom/press.cfm

ABOUT THE APS DIVISION OF FLUID DYNAMICS

The Division of Fluid Dynamics of the American Physical Society (APS) exists for the advancement and diffusion of knowledge of the physics of fluids with special emphasis on the dynamical theories of the liquid, plastic and gaseous states of matter under all conditions of temperature and pressure. DFD Website: http://www.aps.org/units/dfd/index.cfm

Jason Socrates Bardi | EurekAlert!
Further information:
http://www.aps.org

Further reports about: Dynamic air pressure chemical process computer model fluid dynamics

More articles from Physics and Astronomy:

nachricht Ultra-compact phase modulators based on graphene plasmons
27.06.2017 | ICFO-The Institute of Photonic Sciences

nachricht Smooth propagation of spin waves using gold
26.06.2017 | Toyohashi University of Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Touch Displays WAY-AX and WAY-DX by WayCon

27.06.2017 | Power and Electrical Engineering

Drones that drive

27.06.2017 | Information Technology

Ultra-compact phase modulators based on graphene plasmons

27.06.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>