Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Better combustion through plasma

27.11.2013
Plasma-assisted combustion could help make jets fly higher, faster and longer, according to work presented at APS Division of Fluid Dynamics Meeting

Mix together air, fuel, and heat and you get combustion, the chemical reaction that powers most engines in planes, trains and automobiles. And if you throw in some ionized gas (plasma), it turns out, you can sustain combustion even in conditions that would otherwise snuff out the reaction: at low air pressure, in high winds or when there's low fuel.

Such plasma-assisted combustion can potentially give an efficiency boost to high-performance aircraft. The technology could help military jets fly at high altitudes, passenger planes and unmanned drones cruise for long distances while conserving fuel, and supersonic jets maintain ignition at breakneck speeds that would normally suffocate flames with fast-flowing air.

Scientists know that by introducing plasma to the reaction – near or at the location where the flame ignites – new chemical species are produced that catalyze combustion. But no one knows precisely what species are involved, what the reactions are, and what their rates are. "It's not well understood at all," said Igor Adamovich of Ohio State University.

To better understand plasma-assisted combustion and to develop future technology, researchers are conducting experiments and creating computer models to determine which chemical processes are involved.

Adamovich will discuss some of his and his colleagues' recent experimental results and computer models at the meeting of the American Physical Society's Division of Fluid Dynamics, held Nov. 24 – 26 in Pittsburgh. The researchers studied reactions and reaction rates at air pressures that represent high-altitude flight and at temperatures between 200 and 400 degrees Celsius -- below ignition temperature and where data and reliable models are particularly lacking. The researchers found that for simpler fuels – such as hydrogen, methane and ethylene – the models agreed fairly well with experimental data, while for propane, the agreement was much worse.

Just over five years ago, relatively little was known about how plasma-assisted combustion works, Adamovich said. But since then, scientists have made significant progress toward identifying the mechanism behind the plasma assisted combustion chemistry. "We hope in a few years, such a mechanism might emerge," he said.

The presentation "Kinetic Modeling of Low-Temperature Plasma Assisted Combustion," is at 2:23 p.m. on Tuesday, November 26, 2013 in the David L. Lawrence Convention Center, Room 317. ABSTRACT: http://meeting.aps.org/Meeting/DFD13/Event/204268

MEETING INFORMATION

The 66th Annual Division of Fluid Dynamics Meeting will be held at David L. Lawrence Convention Center in Pittsburgh, Pennsylvania from November 24-26, 2013. More meeting information: http://www.apsdfd2013.pitt.edu

REGISTERING AS PRESS

Any credentialed journalist, full-time or freelance, may attend the conference free of charge. Please email: dfdmedia@aps.org and include "DFD Press" in the subject line. Work space will be provided on-site during the meeting and news and graphics will be hosted on the Virtual Press Room: http://www.aps.org/units/dfd/pressroom/press.cfm

ABOUT THE APS DIVISION OF FLUID DYNAMICS

The Division of Fluid Dynamics of the American Physical Society (APS) exists for the advancement and diffusion of knowledge of the physics of fluids with special emphasis on the dynamical theories of the liquid, plastic and gaseous states of matter under all conditions of temperature and pressure. DFD Website: http://www.aps.org/units/dfd/index.cfm

Jason Socrates Bardi | EurekAlert!
Further information:
http://www.aps.org

Further reports about: Dynamic air pressure chemical process computer model fluid dynamics

More articles from Physics and Astronomy:

nachricht Basque researchers turn light upside down
23.02.2018 | Elhuyar Fundazioa

nachricht Attoseconds break into atomic interior
23.02.2018 | Max-Planck-Institut für Quantenoptik

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>