Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Columbia engineering team discovers graphene's weakness

Applied physics professor Chris Marianetti figures out how to shatter the world's strongest material

New York, NY November 29, 2010 In 2008, experiments at The Fu Foundation School of Engineering and Applied Science at Columbia University established pure graphene, a single layer of graphite only one atom thick, as the strongest material known to mankind. This raised a question for Chris Marianetti, Assistant Professor in Columbia Engineering's Department of Applied Physics and Applied Mathematics: how and why does graphene break?

Using quantum theory and supercomputers, Marianetti has revealed the mechanisms of mechanical failure of pure graphene under tensile stress. In a paper recently accepted for publication in the journal Physical Review Letters, he shows that, when graphene is subject to strain equal in all directions, it morphs into a new structure which is mechanically unstable.

Marianetti says this failure mechanism is a novel soft-mode phonon instability. A phonon is a collective vibrational mode of atoms within a crystal, similar to a wave in a liquid. The fact that a phonon becomes "soft" under tensile strain means that the system can lower its energy by distorting the atoms along the vibrational mode and transitioning to a new crystalline arrangement. Under sufficient strain, graphene develops a particular soft-mode that causes the honeycomb arrangement of carbon atoms to be driven towards isolated hexagonal rings. This new crystal is structurally weaker, resulting in the mechanical failure of the graphene sheet.

"This is exciting on many different levels," Marianetti notes. "Soft modes were first recognized in the 1960s in the context of ferroelectric phase transitions, but they have never been directly linked to fracture. Typically, defects in a material will always cause failure to happen prematurely, but the pristine nature of graphene allows one to test our prediction. We have already outlined some interesting new experiments to directly observe our theoretical prediction of the soft mode."

Marianetti added that this is the first time a soft optical phonon has ever been linked to mechanical failure and that therefore it is likely that this novel failure mechanism is not exclusive to graphene but may be prevalent in other very thin materials. "With nanotechnology becoming increasingly ubiquitous, understanding the nature of mechanical behavior in low dimensional systems such as graphene is of great importance. We think strain may be a means to engineer the properties of graphene, and therefore understanding its limits is critical." The research was funded by the National Science Foundation.

Marianetti's research interests lie in the use of classical and quantum mechanics to model the behavior of materials at the atomic scale. In particular, he is focused on applying these techniques to materials with potential for energy storage and conversion. Current applications in his research program range from nuclear materials such as plutonium to rechargeable battery materials such as cobalt oxides.

Marianetti received his BS and MS degrees from Ohio State University and his PhD in materials science and engineering from MIT. Before joining the faculty at Columbia Engineering, he did post-doctoral research in the Department of Physics at Rutgers University and in the Materials Chemistry Division of Lawrence Livermore National Laboratory.

Columbia Engineering

Columbia University's Fu Foundation School of Engineering and Applied Science offers programs to both undergraduate and graduate students who undertake a course of study leading to the bachelor's, master's, or doctoral degree in engineering and applied science. With facilities specifically designed and equipped to meet the laboratory and research needs of faculty and students, Columbia Engineering is home to a broad array of basic and advanced research installations, from the Columbia Center for Electron Transport in Molecular Nanostructures to the Columbia Genome Center. These interdisciplinary centers in science and engineering, materials research, nanoscale research, and genomic research are leading the way in their respective fields while individual groups of engineers and scientists collaborate to solve some of society's more vexing challenges.

Holly Evarts | EurekAlert!
Further information:

More articles from Physics and Astronomy:

nachricht OU-led team discovers rare, newborn tri-star system using ALMA
27.10.2016 | University of Oklahoma

nachricht First results of NSTX-U research operations
26.10.2016 | DOE/Princeton Plasma Physics Laboratory

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

How nanoscience will improve our health and lives in the coming years

27.10.2016 | Materials Sciences

OU-led team discovers rare, newborn tri-star system using ALMA

27.10.2016 | Physics and Astronomy

'Neighbor maps' reveal the genome's 3-D shape

27.10.2016 | Life Sciences

More VideoLinks >>>