Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Color it ready -- Webb Telescope instrument now at Goddard

31.03.2010
The cosmos is filled with color, and color is a key in determining age, chemical composition and how far objects are from Earth.

To help identify these colors and objects the James Webb Space Telescope will be using a spectrograph called NIRSpec. Recently, the engineering test unit for the Webb telescope's Near-Infrared Spectrograph (NIRSpec) instrument arrived at NASA's Goddard Space Flight Center, Greenbelt, Md. from its manufacturer in Germany for preliminary testing.

"A spectrograph is an instrument that separates light into a spectrum," said Bernie Rauscher of NASA Goddard. "One example of a spectrograph that most folks know about is a chandelier (or diamond ring). When sunlight shines through it, it breaks it up into colors. NIRSpec analyzes those colors from deep space to help us solve mysteries." Rauscher is the Principal Investigator for the NIRSpec Detector Subsystem and the Deputy Project Scientist of the Webb's Integrated Science Instrument Module (ISIM).

The NIRSpec instrument will be the principal spectrographic instrument on-board the Webb telescope.

The components that make up NIRSpec will be sensitive to infrared wavelengths from the most distant galaxies and will be capable of obtaining spectra of more than 100 objects in the cosmos simultaneously. Determining an object's spectra is important, because it will help scientists determine the age, chemical composition and distances of faint galaxies. These measurements are key to unraveling the history of galaxy formation in the early Universe - one of the primary science goals of the Webb mission.

One unique technology in the NIRSpec that enables it to obtain those 100 simultaneous spectra is a micro-electromechanical system called a "microshutter array." NIRSpec's microshutter cells, each approximately as wide as a human hair, have lids that open and close when a magnetic field is applied. Each cell can be controlled individually, allowing it to be opened or closed to view or block a portion of the sky. It is this adjustability that allows the instrument to do spectroscopy on so many objects simultaneously. Because the objects NIRSpec will be looking at are so far away and so faint, the instrument needs a way to block out the light of nearer bright objects. Microshutters operate similarly to people squinting to focus on an object by blocking out interfering light.

NASA Goddard has a lot invested in the NIRSpec. Goddard built NIRSpec's detector and microshutter systems. EADS/Astrium is the European Space Agency's (ESA) prime contractor for the overall NIRSpec instrument. The prototype instrument was integrated and tested at Astrium's facility in Munich, Germany, before being shipped to Goddard.

Now that it has arrived at Goddard, the NIRSpec engineering test unit will go through pre-integration testing with the ISIM, which acts as a "chassis" to the Webb telescope observatory. Along with the other instruments, NIRSpec will be fitted into the ISIM, which is also currently at Goddard. The engineering test unit reproduces the physical, thermal, electrical and optical (up to the Micro-Shutter Array unit) properties of the flight model.

The James Webb Space Telescope is the next-generation premier space observatory, exploring deep space phenomena from distant galaxies to nearby planets and stars. The Webb Telescope will give scientists clues about the formation of the universe and the evolution of our own solar system, from the first light after the Big Bang to the formation of star systems capable of supporting life on planets like Earth.

The Webb Telescope project is managed at NASA's Goddard Space Flight Center in Greenbelt, Md. The telescope is a joint project of NASA, the European Space Agency and the Canadian Space Agency, and will launch in 2014.

For information about NASA's James Webb Space Telescope, visit: http://www.jwst.nasa.gov/

For more information about the NIRSpec, visit: http://www.jwst.nasa.gov/nirspec.html

For more information, visit the NIRSpec website at the Space Telescope Science Institute: http://www.stsci.edu/ngst/instruments/nirspec/

Rob Gutro | EurekAlert!
Further information:
http://www.nasa.gov
http://www.jwst.nasa.gov/

More articles from Physics and Astronomy:

nachricht Writing and deleting magnets with lasers
19.04.2018 | Helmholtz-Zentrum Dresden-Rossendorf

nachricht Ultrafast electron oscillation and dephasing monitored by attosecond light source
19.04.2018 | Yokohama National University

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

Im Focus: The Future of Ultrafast Solid-State Physics

In an article that appears in the journal “Review of Modern Physics”, researchers at the Laboratory for Attosecond Physics (LAP) assess the current state of the field of ultrafast physics and consider its implications for future technologies.

Physicists can now control light in both time and space with hitherto unimagined precision. This is particularly true for the ability to generate ultrashort...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Diamond-like carbon is formed differently to what was believed -- machine learning enables development of new model

19.04.2018 | Materials Sciences

Electromagnetic wizardry: Wireless power transfer enhanced by backward signal

19.04.2018 | Physics and Astronomy

Ultrafast electron oscillation and dephasing monitored by attosecond light source

19.04.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>