Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Cologne Scientist discovers Water Plumes on Jupiter’s Moon Europa

Plumes reach heights of 200 km

A Cologne scientist has, together with American colleagues, discovered huge active plumes containing water vapour being released from the surface of Jupiter’s moon Europa.

This sensational find was made using the NASA/ESA Hubble Space Telescope. Joachim Saur, professor at the Institute for Geophysics and Meteorology of the University of Cologne was principal investigator of the Hubble observing campaign. The discovery of the water vapour plumes was announced at a NASA press conference in San Francisco and online in the journal Science.

Jupiter’s moon Europa has been a focus of extraterrestrial research for some time now as there were clear indications that it harbours a liquid ocean beneath its icy crust. Lorenz Roth of the Southwest Research Institute in San Antonio, Texas and Joachim Saur of the University of Cologne have used the NASA/ESA Hubble Space Telescope to prove that there is water vapour erupting near its south pole. The water plumes are in comparison to earth geysers immensely large and reach heights of approximately 200 km. Europa has a circumference of 3200 km and is thereby comparable in size with the Moon.

“Water is generally considered a basic prerequisite for life – at least as we know it on earth,” says Lorenz Roth, who was in charge of analysing the observations and has been working at the Southwest Research Institute in America. “For this reason, the discovery of a water vapour plumes on the moon Europa has increasingly become a focus of extraterrestrial research.” The plumes eject material from the surface which will make further investigations of the moon Jupiter much easier in the future.

“We have been advancing the search for water and water plumes with multiple Hubble campaigns,” says Joachim Saur. “However, it was only after a camera on the Hubble Space Telescope in one of the last Space Shuttle Missions was repaired that we were able to achieve enough sensitivity to observe the fountains.”

The water plumes could only be seen in the observations when Europe was in a position in its orbit where the moon was furthest away from Jupiter. That means that the activity of the fountain varies temporally. Europa’s orbit is not quite circular but slightly elliptical. When Europa is furthest away from Jupiter in its orbit, the tidal forces cause the huge fractures in Europa’s ice surface to widen from which presumably the vapour is released.

Similar plumes of water vapour were discovered by the Cassini spacecraft on the Saturnian moon Enceladus. The activities there are similar to those on Europa during its orbit around its mother planet.

For queries, contact:
Prof. Dr. Joachim Saur
Institute for Geophysics and Meteorology
E-Mail: saur(at)
Tel.: +49 (0)221 470 2310

Dr. Joachim Saur | EurekAlert!
Further information:

More articles from Physics and Astronomy:

nachricht Move over, lasers: Scientists can now create holograms from neutrons, too
21.10.2016 | National Institute of Standards and Technology (NIST)

nachricht Finding the lightest superdeformed triaxial atomic nucleus
20.10.2016 | The Henryk Niewodniczanski Institute of Nuclear Physics Polish Academy of Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>