Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Colloidal Quasi-Crystals Discovered

20.01.2011
An international research group led by Professor Stephan Förster of the University of Bayreuth has discovered colloidal quasi-crystals for the first time.

In contrast to the quasi-crystals previously documented, which can only be produced under special laboratory conditions, they are simply structured polymers that evolve through self-assembly.


(A) Defraction image of a colloidal quasi-crystal with 12-fold symmetry; underneath the corresponding tiling. - (B) Defraction image of a colloidal quasi-crystal with 18-fold symmetry; again underneath the corresponding tiling. - The tilings depict the respective complete overall structures. Images: Department of Physical Chemistry, University of Bayreuth; free for publication when references are included.

Due to their structural characteristics, they will probably be used in the development of innovative devices in photonics. In the "Proceedings of the National Academy of Sciences of the United States of America (PNAS)", the participating scientists from Bayreuth, Zurich, Hamburg and Grenoble report this discovery.

Unusual symmetrical structures, made visible in diffraction experiments

Quasi-crystals are characterised by a very unusual alignment of atoms. In normal crystals, atoms form ordered periodical structures; i.e. they arrange themselves into a gap-free integral overall structure, whereby one single symmetrical pattern is regularly repeated. For geometrical reasons, only 1-, 2-, 3-, 4- and 6-fold symmetries are possible. This figure indicates how frequently a structure may be rotated between 0 and 360 degrees, until it is congruent with itself. Quasi-crystals behave differently. They contain ordered aperiodic structures, i.e. there are at least two different symmetrical patterns which form a gap-free integral overall structure, despite not repeating themselves regularly. Under these circumstances, 8-, 10- or 12-fold symmetries may originate.

The structural differences between crystals and quasi-crystals can be made visible in diffraction experiments, using electromagnetic waves. This results in diffraction patterns that provide information on the structure of crystals and quasi-crystals. The discernible symmetrical structures are termed diffraction symmetries.

Colloidal quasi-crystals that evolve through self-assembly

The colloidal quasi-crystals that were discovered are hydrogels (insoluble water-containing polymers). They have a relatively simple structure and evolve by self-assembly of identical "building bricks". Such "building bricks" are polymer micelles: small spherical entities with a diameter ranging between 5 and 100 nanometres, which can be produced on a greater scale without any laboratory input. Therefore colloidal quasi-crystals are easily obtainable to a great number of scientists and to industry.

Professor Stephan Förster's Bayreuth University team has been studying polymer micelles capable of forming lattice structures (i.e. on scales of up to 100 nanometres length) for a considerable period. In joint research projects with the Institute Laue-Langevin in Grenoble and the DESY in Hamburg, it was recently discovered that from such self-assembly, quasi-crystalline lattice structures may evolve. Not only was a 12-fold symmetry observed in diffraction experiments, but also an 18-fold symmetry for the very first time.

Perspectives for innovative uses in photonics

Such experiments are under no circumstances to be considered "glass bead games" of fundamental research. Researchers in the field of photonics, a branch of physics, are interested in high-numbered diffraction symmetries applied to the development of optical technologies for the transfer and saving of information. In recent years it was shown that structures with high diffraction symmetries are characterised by the passage of light rays only in certain directions. They are a particularly suitable medium when it comes to the passage of light rays of a certain wavelength in previously defined directions. Therefore structures with high diffraction symmetries are extremely relevant to the manufacture of photonic devices.

Are the recently discovered hydrogels, with their high diffraction symmetries, suitable as "building materials" for photonics? For this to happen, one obstacle needs to be overcome: photonics requires structural characteristics of several hundred nanometres, while colloidal quasi-crystals do not extend beyond 100 nanometres. Scientists in Bayreuth, Hamburg and Grenoble are currently intensively working on the formation of quasi-crystalline larger structures, suitable for use in photonic devices, from polymer micelles. "I am optimistic that such endeavours will soon be successful", says Professor Stephan Förster.

Quasi-crystals – no longer a laboratory curiosity

Colloidal quasi-crystals are expected to be far more suitable for uses within photonics than the approx. 100 quasi-crystalline compounds known to date. These are nearly all metal alloys that can only be produced in small amounts and under special laboratory conditions. Furthermore, these quasi-crystalline structures range in size between 0.1 and 1 nanometre. For practical use in photonics, they are first and foremost far too small. In order to produce quasi-crystalline structures for photonics, up until now very intricate electrolithographic processes were required. The very existence of quasi-crystals was first proven in 1984 by a research team fronted by the American physicist Dan Shechtman. Afterwards, quasi-crystals were considered a laboratory curiosity for a long period, until photonics researchers were alerted to their unusual structural characteristics.

The international research team now publishing their discovery of colloidal quasi-crystals, includes Stephan Förster and his Bayreuth University team, Professor Walter Steurer and Dr Sofia Deloudi (ETH Zurich), Dr Peter Lindner (ILL Grenoble) and Dr Jan Perlich (DESY Hamburg).

Publication:

Steffen Fischer, Alexander Exner, Kathrin Zielske, Jan Perlich, Sofia Deloudi, Walter Steurer, Peter Lindner, Stephan Förster,
Colloidal quasicrystals with 12-fold and 18-fold diffraction symmetry,
in: Proceedings of the National Academy of Sciences of the United States of America (PNAS),
PNAS published ahead of print January 11, 2011,
DOI-Bookmark: 10.1073/pnas.1008695108
Contact for further information:
Professor Dr. Stephan Förster
Department of Physical Chemistry I
University of Bayreuth D-95440 Bayreuth
Tel: +49 (0)921 / 55–2760
E-Mail (Secr.): elisabeth.duengfelder@uni-bayreuth.de

Christian Wißler | Universität Bayreuth
Further information:
http://www.uni-bayreuth.de

More articles from Physics and Astronomy:

nachricht Astronomers find unexpected, dust-obscured star formation in distant galaxy
24.03.2017 | University of Massachusetts at Amherst

nachricht Gravitational wave kicks monster black hole out of galactic core
24.03.2017 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>