Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Colloidal Quasi-Crystals Discovered

An international research group led by Professor Stephan Förster of the University of Bayreuth has discovered colloidal quasi-crystals for the first time.

In contrast to the quasi-crystals previously documented, which can only be produced under special laboratory conditions, they are simply structured polymers that evolve through self-assembly.

(A) Defraction image of a colloidal quasi-crystal with 12-fold symmetry; underneath the corresponding tiling. - (B) Defraction image of a colloidal quasi-crystal with 18-fold symmetry; again underneath the corresponding tiling. - The tilings depict the respective complete overall structures. Images: Department of Physical Chemistry, University of Bayreuth; free for publication when references are included.

Due to their structural characteristics, they will probably be used in the development of innovative devices in photonics. In the "Proceedings of the National Academy of Sciences of the United States of America (PNAS)", the participating scientists from Bayreuth, Zurich, Hamburg and Grenoble report this discovery.

Unusual symmetrical structures, made visible in diffraction experiments

Quasi-crystals are characterised by a very unusual alignment of atoms. In normal crystals, atoms form ordered periodical structures; i.e. they arrange themselves into a gap-free integral overall structure, whereby one single symmetrical pattern is regularly repeated. For geometrical reasons, only 1-, 2-, 3-, 4- and 6-fold symmetries are possible. This figure indicates how frequently a structure may be rotated between 0 and 360 degrees, until it is congruent with itself. Quasi-crystals behave differently. They contain ordered aperiodic structures, i.e. there are at least two different symmetrical patterns which form a gap-free integral overall structure, despite not repeating themselves regularly. Under these circumstances, 8-, 10- or 12-fold symmetries may originate.

The structural differences between crystals and quasi-crystals can be made visible in diffraction experiments, using electromagnetic waves. This results in diffraction patterns that provide information on the structure of crystals and quasi-crystals. The discernible symmetrical structures are termed diffraction symmetries.

Colloidal quasi-crystals that evolve through self-assembly

The colloidal quasi-crystals that were discovered are hydrogels (insoluble water-containing polymers). They have a relatively simple structure and evolve by self-assembly of identical "building bricks". Such "building bricks" are polymer micelles: small spherical entities with a diameter ranging between 5 and 100 nanometres, which can be produced on a greater scale without any laboratory input. Therefore colloidal quasi-crystals are easily obtainable to a great number of scientists and to industry.

Professor Stephan Förster's Bayreuth University team has been studying polymer micelles capable of forming lattice structures (i.e. on scales of up to 100 nanometres length) for a considerable period. In joint research projects with the Institute Laue-Langevin in Grenoble and the DESY in Hamburg, it was recently discovered that from such self-assembly, quasi-crystalline lattice structures may evolve. Not only was a 12-fold symmetry observed in diffraction experiments, but also an 18-fold symmetry for the very first time.

Perspectives for innovative uses in photonics

Such experiments are under no circumstances to be considered "glass bead games" of fundamental research. Researchers in the field of photonics, a branch of physics, are interested in high-numbered diffraction symmetries applied to the development of optical technologies for the transfer and saving of information. In recent years it was shown that structures with high diffraction symmetries are characterised by the passage of light rays only in certain directions. They are a particularly suitable medium when it comes to the passage of light rays of a certain wavelength in previously defined directions. Therefore structures with high diffraction symmetries are extremely relevant to the manufacture of photonic devices.

Are the recently discovered hydrogels, with their high diffraction symmetries, suitable as "building materials" for photonics? For this to happen, one obstacle needs to be overcome: photonics requires structural characteristics of several hundred nanometres, while colloidal quasi-crystals do not extend beyond 100 nanometres. Scientists in Bayreuth, Hamburg and Grenoble are currently intensively working on the formation of quasi-crystalline larger structures, suitable for use in photonic devices, from polymer micelles. "I am optimistic that such endeavours will soon be successful", says Professor Stephan Förster.

Quasi-crystals – no longer a laboratory curiosity

Colloidal quasi-crystals are expected to be far more suitable for uses within photonics than the approx. 100 quasi-crystalline compounds known to date. These are nearly all metal alloys that can only be produced in small amounts and under special laboratory conditions. Furthermore, these quasi-crystalline structures range in size between 0.1 and 1 nanometre. For practical use in photonics, they are first and foremost far too small. In order to produce quasi-crystalline structures for photonics, up until now very intricate electrolithographic processes were required. The very existence of quasi-crystals was first proven in 1984 by a research team fronted by the American physicist Dan Shechtman. Afterwards, quasi-crystals were considered a laboratory curiosity for a long period, until photonics researchers were alerted to their unusual structural characteristics.

The international research team now publishing their discovery of colloidal quasi-crystals, includes Stephan Förster and his Bayreuth University team, Professor Walter Steurer and Dr Sofia Deloudi (ETH Zurich), Dr Peter Lindner (ILL Grenoble) and Dr Jan Perlich (DESY Hamburg).


Steffen Fischer, Alexander Exner, Kathrin Zielske, Jan Perlich, Sofia Deloudi, Walter Steurer, Peter Lindner, Stephan Förster,
Colloidal quasicrystals with 12-fold and 18-fold diffraction symmetry,
in: Proceedings of the National Academy of Sciences of the United States of America (PNAS),
PNAS published ahead of print January 11, 2011,
DOI-Bookmark: 10.1073/pnas.1008695108
Contact for further information:
Professor Dr. Stephan Förster
Department of Physical Chemistry I
University of Bayreuth D-95440 Bayreuth
Tel: +49 (0)921 / 55–2760
E-Mail (Secr.):

Christian Wißler | Universität Bayreuth
Further information:

More articles from Physics and Astronomy:

nachricht Move over, lasers: Scientists can now create holograms from neutrons, too
21.10.2016 | National Institute of Standards and Technology (NIST)

nachricht Finding the lightest superdeformed triaxial atomic nucleus
20.10.2016 | The Henryk Niewodniczanski Institute of Nuclear Physics Polish Academy of Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>