Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Colloidal Quasi-Crystals Discovered

20.01.2011
An international research group led by Professor Stephan Förster of the University of Bayreuth has discovered colloidal quasi-crystals for the first time.

In contrast to the quasi-crystals previously documented, which can only be produced under special laboratory conditions, they are simply structured polymers that evolve through self-assembly.


(A) Defraction image of a colloidal quasi-crystal with 12-fold symmetry; underneath the corresponding tiling. - (B) Defraction image of a colloidal quasi-crystal with 18-fold symmetry; again underneath the corresponding tiling. - The tilings depict the respective complete overall structures. Images: Department of Physical Chemistry, University of Bayreuth; free for publication when references are included.

Due to their structural characteristics, they will probably be used in the development of innovative devices in photonics. In the "Proceedings of the National Academy of Sciences of the United States of America (PNAS)", the participating scientists from Bayreuth, Zurich, Hamburg and Grenoble report this discovery.

Unusual symmetrical structures, made visible in diffraction experiments

Quasi-crystals are characterised by a very unusual alignment of atoms. In normal crystals, atoms form ordered periodical structures; i.e. they arrange themselves into a gap-free integral overall structure, whereby one single symmetrical pattern is regularly repeated. For geometrical reasons, only 1-, 2-, 3-, 4- and 6-fold symmetries are possible. This figure indicates how frequently a structure may be rotated between 0 and 360 degrees, until it is congruent with itself. Quasi-crystals behave differently. They contain ordered aperiodic structures, i.e. there are at least two different symmetrical patterns which form a gap-free integral overall structure, despite not repeating themselves regularly. Under these circumstances, 8-, 10- or 12-fold symmetries may originate.

The structural differences between crystals and quasi-crystals can be made visible in diffraction experiments, using electromagnetic waves. This results in diffraction patterns that provide information on the structure of crystals and quasi-crystals. The discernible symmetrical structures are termed diffraction symmetries.

Colloidal quasi-crystals that evolve through self-assembly

The colloidal quasi-crystals that were discovered are hydrogels (insoluble water-containing polymers). They have a relatively simple structure and evolve by self-assembly of identical "building bricks". Such "building bricks" are polymer micelles: small spherical entities with a diameter ranging between 5 and 100 nanometres, which can be produced on a greater scale without any laboratory input. Therefore colloidal quasi-crystals are easily obtainable to a great number of scientists and to industry.

Professor Stephan Förster's Bayreuth University team has been studying polymer micelles capable of forming lattice structures (i.e. on scales of up to 100 nanometres length) for a considerable period. In joint research projects with the Institute Laue-Langevin in Grenoble and the DESY in Hamburg, it was recently discovered that from such self-assembly, quasi-crystalline lattice structures may evolve. Not only was a 12-fold symmetry observed in diffraction experiments, but also an 18-fold symmetry for the very first time.

Perspectives for innovative uses in photonics

Such experiments are under no circumstances to be considered "glass bead games" of fundamental research. Researchers in the field of photonics, a branch of physics, are interested in high-numbered diffraction symmetries applied to the development of optical technologies for the transfer and saving of information. In recent years it was shown that structures with high diffraction symmetries are characterised by the passage of light rays only in certain directions. They are a particularly suitable medium when it comes to the passage of light rays of a certain wavelength in previously defined directions. Therefore structures with high diffraction symmetries are extremely relevant to the manufacture of photonic devices.

Are the recently discovered hydrogels, with their high diffraction symmetries, suitable as "building materials" for photonics? For this to happen, one obstacle needs to be overcome: photonics requires structural characteristics of several hundred nanometres, while colloidal quasi-crystals do not extend beyond 100 nanometres. Scientists in Bayreuth, Hamburg and Grenoble are currently intensively working on the formation of quasi-crystalline larger structures, suitable for use in photonic devices, from polymer micelles. "I am optimistic that such endeavours will soon be successful", says Professor Stephan Förster.

Quasi-crystals – no longer a laboratory curiosity

Colloidal quasi-crystals are expected to be far more suitable for uses within photonics than the approx. 100 quasi-crystalline compounds known to date. These are nearly all metal alloys that can only be produced in small amounts and under special laboratory conditions. Furthermore, these quasi-crystalline structures range in size between 0.1 and 1 nanometre. For practical use in photonics, they are first and foremost far too small. In order to produce quasi-crystalline structures for photonics, up until now very intricate electrolithographic processes were required. The very existence of quasi-crystals was first proven in 1984 by a research team fronted by the American physicist Dan Shechtman. Afterwards, quasi-crystals were considered a laboratory curiosity for a long period, until photonics researchers were alerted to their unusual structural characteristics.

The international research team now publishing their discovery of colloidal quasi-crystals, includes Stephan Förster and his Bayreuth University team, Professor Walter Steurer and Dr Sofia Deloudi (ETH Zurich), Dr Peter Lindner (ILL Grenoble) and Dr Jan Perlich (DESY Hamburg).

Publication:

Steffen Fischer, Alexander Exner, Kathrin Zielske, Jan Perlich, Sofia Deloudi, Walter Steurer, Peter Lindner, Stephan Förster,
Colloidal quasicrystals with 12-fold and 18-fold diffraction symmetry,
in: Proceedings of the National Academy of Sciences of the United States of America (PNAS),
PNAS published ahead of print January 11, 2011,
DOI-Bookmark: 10.1073/pnas.1008695108
Contact for further information:
Professor Dr. Stephan Förster
Department of Physical Chemistry I
University of Bayreuth D-95440 Bayreuth
Tel: +49 (0)921 / 55–2760
E-Mail (Secr.): elisabeth.duengfelder@uni-bayreuth.de

Christian Wißler | Universität Bayreuth
Further information:
http://www.uni-bayreuth.de

More articles from Physics and Astronomy:

nachricht A 100-year-old physics problem has been solved at EPFL
23.06.2017 | Ecole Polytechnique Fédérale de Lausanne

nachricht Quantum thermometer or optical refrigerator?
23.06.2017 | National Institute of Standards and Technology (NIST)

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>