Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Colloidal Quasi-Crystals Discovered

20.01.2011
An international research group led by Professor Stephan Förster of the University of Bayreuth has discovered colloidal quasi-crystals for the first time.

In contrast to the quasi-crystals previously documented, which can only be produced under special laboratory conditions, they are simply structured polymers that evolve through self-assembly.


(A) Defraction image of a colloidal quasi-crystal with 12-fold symmetry; underneath the corresponding tiling. - (B) Defraction image of a colloidal quasi-crystal with 18-fold symmetry; again underneath the corresponding tiling. - The tilings depict the respective complete overall structures. Images: Department of Physical Chemistry, University of Bayreuth; free for publication when references are included.

Due to their structural characteristics, they will probably be used in the development of innovative devices in photonics. In the "Proceedings of the National Academy of Sciences of the United States of America (PNAS)", the participating scientists from Bayreuth, Zurich, Hamburg and Grenoble report this discovery.

Unusual symmetrical structures, made visible in diffraction experiments

Quasi-crystals are characterised by a very unusual alignment of atoms. In normal crystals, atoms form ordered periodical structures; i.e. they arrange themselves into a gap-free integral overall structure, whereby one single symmetrical pattern is regularly repeated. For geometrical reasons, only 1-, 2-, 3-, 4- and 6-fold symmetries are possible. This figure indicates how frequently a structure may be rotated between 0 and 360 degrees, until it is congruent with itself. Quasi-crystals behave differently. They contain ordered aperiodic structures, i.e. there are at least two different symmetrical patterns which form a gap-free integral overall structure, despite not repeating themselves regularly. Under these circumstances, 8-, 10- or 12-fold symmetries may originate.

The structural differences between crystals and quasi-crystals can be made visible in diffraction experiments, using electromagnetic waves. This results in diffraction patterns that provide information on the structure of crystals and quasi-crystals. The discernible symmetrical structures are termed diffraction symmetries.

Colloidal quasi-crystals that evolve through self-assembly

The colloidal quasi-crystals that were discovered are hydrogels (insoluble water-containing polymers). They have a relatively simple structure and evolve by self-assembly of identical "building bricks". Such "building bricks" are polymer micelles: small spherical entities with a diameter ranging between 5 and 100 nanometres, which can be produced on a greater scale without any laboratory input. Therefore colloidal quasi-crystals are easily obtainable to a great number of scientists and to industry.

Professor Stephan Förster's Bayreuth University team has been studying polymer micelles capable of forming lattice structures (i.e. on scales of up to 100 nanometres length) for a considerable period. In joint research projects with the Institute Laue-Langevin in Grenoble and the DESY in Hamburg, it was recently discovered that from such self-assembly, quasi-crystalline lattice structures may evolve. Not only was a 12-fold symmetry observed in diffraction experiments, but also an 18-fold symmetry for the very first time.

Perspectives for innovative uses in photonics

Such experiments are under no circumstances to be considered "glass bead games" of fundamental research. Researchers in the field of photonics, a branch of physics, are interested in high-numbered diffraction symmetries applied to the development of optical technologies for the transfer and saving of information. In recent years it was shown that structures with high diffraction symmetries are characterised by the passage of light rays only in certain directions. They are a particularly suitable medium when it comes to the passage of light rays of a certain wavelength in previously defined directions. Therefore structures with high diffraction symmetries are extremely relevant to the manufacture of photonic devices.

Are the recently discovered hydrogels, with their high diffraction symmetries, suitable as "building materials" for photonics? For this to happen, one obstacle needs to be overcome: photonics requires structural characteristics of several hundred nanometres, while colloidal quasi-crystals do not extend beyond 100 nanometres. Scientists in Bayreuth, Hamburg and Grenoble are currently intensively working on the formation of quasi-crystalline larger structures, suitable for use in photonic devices, from polymer micelles. "I am optimistic that such endeavours will soon be successful", says Professor Stephan Förster.

Quasi-crystals – no longer a laboratory curiosity

Colloidal quasi-crystals are expected to be far more suitable for uses within photonics than the approx. 100 quasi-crystalline compounds known to date. These are nearly all metal alloys that can only be produced in small amounts and under special laboratory conditions. Furthermore, these quasi-crystalline structures range in size between 0.1 and 1 nanometre. For practical use in photonics, they are first and foremost far too small. In order to produce quasi-crystalline structures for photonics, up until now very intricate electrolithographic processes were required. The very existence of quasi-crystals was first proven in 1984 by a research team fronted by the American physicist Dan Shechtman. Afterwards, quasi-crystals were considered a laboratory curiosity for a long period, until photonics researchers were alerted to their unusual structural characteristics.

The international research team now publishing their discovery of colloidal quasi-crystals, includes Stephan Förster and his Bayreuth University team, Professor Walter Steurer and Dr Sofia Deloudi (ETH Zurich), Dr Peter Lindner (ILL Grenoble) and Dr Jan Perlich (DESY Hamburg).

Publication:

Steffen Fischer, Alexander Exner, Kathrin Zielske, Jan Perlich, Sofia Deloudi, Walter Steurer, Peter Lindner, Stephan Förster,
Colloidal quasicrystals with 12-fold and 18-fold diffraction symmetry,
in: Proceedings of the National Academy of Sciences of the United States of America (PNAS),
PNAS published ahead of print January 11, 2011,
DOI-Bookmark: 10.1073/pnas.1008695108
Contact for further information:
Professor Dr. Stephan Förster
Department of Physical Chemistry I
University of Bayreuth D-95440 Bayreuth
Tel: +49 (0)921 / 55–2760
E-Mail (Secr.): elisabeth.duengfelder@uni-bayreuth.de

Christian Wißler | Universität Bayreuth
Further information:
http://www.uni-bayreuth.de

More articles from Physics and Astronomy:

nachricht Temperature-controlled fiber-optic light source with liquid core
20.06.2018 | Leibniz-Institut für Photonische Technologien e. V.

nachricht New material for splitting water
19.06.2018 | American Institute of Physics

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Creating a new composite fuel for new-generation fast reactors

20.06.2018 | Materials Sciences

Game-changing finding pushes 3D-printing to the molecular limit

20.06.2018 | Materials Sciences

Could this material enable autonomous vehicles to come to market sooner?

20.06.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>