Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Colliding auroras produce an explosion of light

21.12.2009
A network of cameras deployed around the Arctic in support of NASA's THEMIS mission has made a startling discovery about the Northern Lights. Sometimes, vast curtains of aurora borealis collide, producing spectacular outbursts of light. Movies of the phenomenon were unveiled at the Fall Meeting of the American Geophysical Union today in San Francisco.

"Our jaws dropped when we saw the movies for the first time," said space scientist Larry Lyons of the University of California-Los Angeles (UCLA), a member of the team that made the discovery. "These outbursts are telling us something very fundamental about the nature of auroras."

The collisions occur on such a vast scale that isolated observers on Earth -- with limited fields of view -- had never noticed them before. It took a network of sensitive cameras spread across thousands of miles to get the big picture.

NASA and the Canadian Space Agency created such a network for THEMIS, short for "Time History of Events and Macroscale Interactions during Substorms." THEMIS consists of five identical probes launched in 2006 to solve a long-standing mystery: Why do auroras occasionally erupt in an explosion of light called a substorm?

Twenty all-sky imagers (ASIs) were deployed across the Alaskan and Canadian Arctic to photograph auroras from below while the spacecraft sampled charged particles and electromagnetic fields from above. Together, the on-ground cameras and spacecraft would see the action from both sides and be able to piece together cause and effect—or so researchers hoped. It seems to have worked.

The breakthrough came earlier this year when UCLA researcher Toshi Nishimura assembled continent-wide movies from the individual ASI cameras. "It can be a little tricky," Nishimura said. "Each camera has its own local weather and lighting conditions, and the auroras are different distances from each camera. I've got to account for these factors for six or more cameras simultaneously to make a coherent, large-scale movie."

The first movie he showed Lyons was a pair of auroras crashing together in Dec. 2007. "It was like nothing I had seen before," Lyons recalled. "Over the next several days, we surveyed more events. Our excitement mounted as we became convinced that the collisions were happening over and over."

The explosions of light, they believe, are a sign of something dramatic happening in the space around Earth—specifically, in Earth's "plasma tail." Millions of kilometers long and pointed away from the sun, the plasma tail is made of charged particles captured mainly from the solar wind. Sometimes called the "plasma sheet," the tail is held together by Earth's magnetic field.

The same magnetic field that holds the tail together also connects it to Earth's polar regions. Because of this connection, watching the dance of Northern Lights can reveal much about what's happening in the plasma tail.

THEMIS project scientist Dave Sibeck of NASA's Goddard Space Flight Center, Greenbelt, Md. said, "By putting together data from ground-based cameras, ground-based radar, and the THEMIS spacecraft, we now have a nearly complete picture of what causes explosive auroral substorms,"

Lyons and Nishimura have identified a common sequence of events. It begins with a broad curtain of slow-moving auroras and a smaller knot of fast-moving auroras, initially far apart. The slow curtain quietly hangs in place, almost immobile, when the speedy knot rushes in from the north. The auroras collide and an eruption of light ensues.

How does this sequence connect to events in the plasma tail? Lyons believes the fast-moving knot is associated with a stream of relatively lightweight plasma jetting through the tail. The stream gets started in the outer regions of the plasma tail and moves rapidly inward toward Earth. The fast knot of auroras moves in synch with this stream.

Meanwhile, the broad curtain of auroras is connected to the stationary inner boundary of the plasma tail and fueled by plasma instabilities there. When the lightweight stream reaches the inner boundary of the plasma tail, there is an eruption of plasma waves and instabilities. This collision of plasma is mirrored by a collision of auroras over the poles.

National Science Foundation-funded radars located in Poker Flat, Alaska, and Sondrestrom, Greenland, confirm this basic picture. They have detected echoes material rushing through Earth's upper atmosphere just before the auroras collide and erupt. The five THEMIS spacecraft also agree. They have been able to fly through the plasma tail and confirm the existence of lightweight flows rushing toward Earth.

Michael Carlowicz | EurekAlert!
Further information:
http://www.nasa.gov

More articles from Physics and Astronomy:

nachricht SF State astronomer searches for signs of life on Wolf 1061 exoplanet
20.01.2017 | San Francisco State University

nachricht Molecule flash mob
19.01.2017 | Technische Universität Wien

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>