Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Coldest Brown Dwarfs Blur Lines between Stars and Planets

06.09.2013
Astronomers are constantly on the hunt for ever-colder star-like bodies, and two years ago a new class of objects was discovered by researchers using NASA's WISE space telescope. However, until now no one has known exactly how cool their surfaces really are - some evidence suggested they could be room temperature.

A new study shows that while these brown dwarfs, sometimes called failed stars, are indeed the coldest known free-floating celestial bodies, they are warmer than previously thought with temperatures about 250-350 degrees Fahrenheit.


This artist's conception portrays a free-floating brown dwarf, or failed star. A new study shows that several of these objects are warmer than previously thought with temperatures about 250-350 degrees Fahrenheit. Credit: NASA/JPL-Caltech

To reach such low surface temperatures after cooling for billions of years means that these objects can only have about 5 to 20 times the mass of Jupiter. Unlike the Sun, these objects' only source of energy is from their gravitational contraction, which depends directly on their mass.

"If one of these objects was found orbiting a star, there is a good chance that it would be called a planet," says Trent Dupuy, a Hubble Fellow at the Harvard-Smithsonian Center for Astrophysics. But because they probably formed on their own and not in a proto-planetary disk, astronomers still call these objects brown dwarfs even if they are "planetary mass."

Characterizing these cold brown dwarfs is challenging because they emit most of their light at infrared wavelengths, and they are very faint due to their small size and low temperature.

To get accurate temperatures, astronomers need to know the distances to these objects. "We wanted to find out if they were colder, fainter, and nearby or if they were warmer, brighter, and more distant," explains Dupuy. Using NASA's Spitzer Space Telescope, the team determined that the brown dwarfs in question are located at distances 20 to 50 light-years away.

To determine the distances to these objects the team measured their parallax - the apparent change in position against background stars over time. As the Spitzer Space Telescope orbits the Sun its perspective changes and nearby objects appear to shift back and forth slightly. The same effect occurs if you hold up a finger in front of your face and close one eye and then the other. The position of your finger seems to shift when viewed against the distant background.

But even for these relatively nearby brown dwarfs, the parallax motion is small. "To be able to determine accurate distances, our measurements had to be the same precision as knowing the position of a firefly to within 1 inch from 200 miles away," explains Adam Kraus, professor at the University of Texas at Austin and the other author of the study.

The new data also present new puzzles to astronomers that study cool, planet-like atmospheres. Unlike warmer brown dwarfs and stars, the observable properties of these objects don't seem to correlate as strongly with temperature. This suggests increased roles for other factors, such as convective mixing, in driving the chemistry at the surface. They also find evidence for disappearing alkali elements that are likely getting incorporated into noxious clouds.

This study examined the initial sample of the coldest brown dwarfs discovered in the WISE survey data. Additional objects discovered in the past two years remain to be studied and will hopefully shed light on some of these outstanding issues.

A paper describing these results, authored by Dupuy and Kraus, appears in the Sept. 5, 2013 issue of Science Express online.

Headquartered in Cambridge, Mass., the Harvard-Smithsonian Center for Astrophysics (CfA) is a joint collaboration between the Smithsonian Astrophysical Observatory and the Harvard College Observatory. CfA scientists, organized into six research divisions, study the origin, evolution and ultimate fate of the universe.

For more information, contact:

David A. Aguilar
Director of Public Affairs
Harvard-Smithsonian Center for Astrophysics
617-495-7462
daguilar@cfa.harvard.edu
Christine Pulliam
Public Affairs Specialist
Harvard-Smithsonian Center for Astrophysics
617-495-7463
cpulliam@cfa.harvard.edu

Christine Pulliam | EurekAlert!
Further information:
http://www.cfa.harvard.edu

More articles from Physics and Astronomy:

nachricht SwRI-led team discovers lull in Mars' giant impact history
26.04.2017 | Southwest Research Institute

nachricht New survey hints at exotic origin for the Cold Spot
26.04.2017 | Royal Astronomical Society

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Scientist invents way to trigger artificial photosynthesis to clean air

26.04.2017 | Materials Sciences

Ammonium nitrogen input increases the synthesis of anticarcinogenic compounds in broccoli

26.04.2017 | Agricultural and Forestry Science

SwRI-led team discovers lull in Mars' giant impact history

26.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>