Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


‘Cold’ wind of the Crab pulsar produces very-high-energy gamma-ray pulses

One of the brightest high-energy gamma-ray sources in the sky is the Crab pulsar, from which recently also pulsed very-high-energy radiation has been discovered.

Scientists around Felix Aharonian from the MPI for Nuclear Physics and the Dublin Institute for Advanced Studies now present an explanation for this radiation. It is based on the abrupt acceleration of an ultrafast wind of “cold” electrons and positrons, taking place at a distance of some Earth’s diameters from the pulsar. (Nature, 15.02.2012 online)

Fig. 1: The Crab nebula (M1) in the Taurus constellation, taken by the Hubble space telescope (lower left). The details to the right are showing a composite of visible light (red) and X-rays (blue) with the pulsar as central star. At the shock front in 0.3 light-years distance from the pulsar, the ultrarelativistic wind of electrons and positrons collides with the surrounding nebula.
Graphics: MPIK, source: NASA

Fig. 2: Schematic evolution of the pulsar wind (electrons and positrons: e–, e+). High-energy gamma quanta (ã) are created in the acceleration zone by inverse Compton scattering of the pulsar wind with X-ray quanta (X) from the magnetosphere as well as at large distance at the shock front to the interstellar medium.
Graphics: MPIK

The Crab pulsar, a fast-rotating, highly magnetized neutron star, is a product of the historical supernova observed in the constellation Taurus in 1054 AD. Its mass amounts to 1.4 to 2 times that of the Sun and its diameter is only 28 to 30 km. Together with its surrounding nebula, it is one of the best investigated astronomical objects (Fig. 1).

The generally accepted paradigm postulates the existence of a relativistic wind of electrons and their antiparticles, positrons, which originates in the pulsar’s magnetosphere and terminates in the interstellar medium. The evolution of the wind is characterized by three consecutive processes (Fig. 2): At a distance of about 1000 km from the pulsar, the pulsar’s rotational energy is transformed into electromagnetic energy, which in turn is converted to kinetic energy of bulk motion, i.e. acceleration of the wind. Finally, the wind terminates by collision with matter in a standing reverse shock about 0.3 light years away. Thereby, the electrons and positrons are accelerated up to extremely high energies, resulting in an extended non-thermal source: the Crab nebula. All three processes need to proceed with incredibly high (close to 100 %) efficiency in order to explain the observational data.

Both the Crab pulsar and the Crab nebula are bright gamma-ray sources. While the pulsar emits in the high energies, the radiation of the nebula is released predominantly at the very-high-energy band. Meanwhile, the third key component, the wind, via which the transfer of energy from the pulsar to the nebula is realized, at first glance seems to be an ‘invisible substance’. Indeed, despite the relativistic speed of the wind, in the frame of the outflow the electrons are ‘cold’, meaning they move together with the wind’s magnetic field and therefore do not emit radiation. The wind, however, can radiate high-energy gamma-rays through the mechanism of inverse Compton scattering in which ultrafast electrons and positrons of the wind are illuminated by X-ray photons originating in the pulsar’s magnetosphere and/or the surface of the neutron star. In a paper published in Nature, Felix Aharonian, Sergey Bogovalov and Dmitry Khangulyan argue that recent reports of the surprise detection of pulsed, very-high-energy gamma radiation from Crab by the VERITAS and MAGIC atmospheric Cherenkov telescopes are best explained by inverse Compton scattering. Pulsed X-ray photons of the pulsar interact with ultrafast electrons of the wind predominantly in their acceleration zone. The wind, therefore, is the source of the pulsed gamma radiation and explains the observations with only three parameters: site of the acceleration of the wind, its final velocity, and the level of anisotropy.

If this interpretation is correct, then detection of the pulsed very-high-energy gamma-ray emission implies the first observational evidence of the formation of a cold ultrafast electron-positron wind from the Crab pulsar. The reported gamma-ray data allow us to localize, with a good precision, the site and estimate the speed with which the electromagnetic energy is transformed into the kinetic energy of the wind’s bulk motion. The results show that the acceleration of the wind to ultrarelativistic velocities should take place abruptly in a narrow cylindrical zone of radius between 20 and 50 thousand kilometers centered on the rotation axis of the pulsar. Although the ultrafast nature of the wind does support the general paradigm of pulsar winds, the requirement of the very fast acceleration of the wind in a narrow zone not very far from the pulsar challenges current models.

Weitere Informationen:
Original publication:
Abrupt acceleration of a 'cold' ultrarelativistic wind from the Crab pulsar
F. A. Aharonian, S. V. Bogovalov and D. Khangulyan
Nature, doi: 10.1038/nature10793
Prof. Dr. Felix Aharonian
MPI für Kernphysik
phone: (+49)6221-516-485
e-mail: felix.aharonian (at)

Dr. Bernold Feuerstein | Max-Planck-Institut
Further information:

More articles from Physics and Astronomy:

nachricht Finding the lightest superdeformed triaxial atomic nucleus
20.10.2016 | The Henryk Niewodniczanski Institute of Nuclear Physics Polish Academy of Sciences

nachricht Innovative technique for shaping light could solve bandwidth crunch
20.10.2016 | The Optical Society

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Innovative technique for shaping light could solve bandwidth crunch

20.10.2016 | Physics and Astronomy

Finding the lightest superdeformed triaxial atomic nucleus

20.10.2016 | Physics and Astronomy

NASA's MAVEN mission observes ups and downs of water escape from Mars

20.10.2016 | Physics and Astronomy

More VideoLinks >>>