Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How do cold ions slide?

27.05.2013
Exploring friction by simulating toy-like systems

Things not always run smoothly. It may happen, actually, that when an object slides on another, the advancement may occur through a 'stop and go' series in the characteristic manner which scientists call "stick-slip", a pervasive phenomenon at every scale, from earthquakes to daily-life objects, up to the "nano" dimension.


This image shows ions on an optical lattice.
Credit: SISSA

Davide Mandelli, Andrea Vanossi and Erio Tosatti of the International School for Advanced Studies (SISSA) of Trieste have studied the conditions in which at the nanoscopic level the switch from smooth sliding to stick-slip regime occurs, simulating 'toy-like' systems of 'cold ions'.

"Our studies are based on the research on trapped cold ions. Before we did, such methodology had never been applied to the field of friction", explains Tosatti. "These are experimental studies I call 'toy-like' because they are models employed to explore reality, in the same way as a Lego little house may be used as the model of a real house. We have simulated such systems and used them in our field of research." Tosatti is the coordinator of the research, which appeared in the scientific journal Physical Review. The study, besides SISSA, also involves the Centro Democritos of Officina dei Materiali CNR-IOM.

More in detail…

The three scientists have simulated the sliding of a one-dimensional ion chain of finite length on a substrate generated by laser beams (an optical lattice).

"The lattice forms a periodic sequence of 'barriers' and 'holes', whose depth determines the behavior of the ion chain when advancing on the substrate pulled by an electric field," explains Mandelli, a student at SISSA. When the holes are shallow – technically speaking, when the amplitude of the corrugated potential is small enough – the ion chain can slide in a continuous manner, while when they are deeper the movement of the ions appears more restrained, and thus the stick-slip regime is observed." Another interesting observation" adds Mandelli "regards the role of the chain's inhomogeneity, as a consequence of which some areas get more or less stuck on the substrate. As a consequence, before the sliding process starts, internal 'adjustments' occur in which few ions move in the direction of the pulling force. Also this phenomenon has been observed at macroscopic scales."
In a 2011 study Tosatti e Vanossi had already employed such model to study static friction. With this work they have extended their observations to the field of dynamics.

"Such studies are important for two reasons", explains Mandelli. "On one side, the stick-slip is a complex phenomenon that occurs at every scale whose dynamics are still little-known. Just try to imagine how important it is to understand it from a geological viewpoint, for instance. On the other, with the development of nanotechnologies also from an application point of view it becomes fundamental to know the details of the interaction mechanics of molecules and atoms."

On the connection between mesoscale and nanoscale friction Tosatti and Vanossi have recently published also a "colloquium" (a series of articles in scientific reviews) in the international journal Reviews of Modern Physics. Such research line carried out at SISSA has been recently awarded with a 5-year Advanced Grant by the European Research Council.

http://www.sissa.it/index.php/about/news/1529

Federica Sgorbissa | EurekAlert!
Further information:
http://www.sissa.it

More articles from Physics and Astronomy:

nachricht Climate cycles may explain how running water carved Mars' surface features
02.12.2016 | Penn State

nachricht What do Netflix, Google and planetary systems have in common?
02.12.2016 | University of Toronto

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>