Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cold atoms could replace hot gallium in focused ion beams

17.11.2008
Scientists at the National Institute of Standards and Technology (NIST) have developed a radical new method of focusing a stream of ions into a point as small as one nanometer (one billionth of a meter).*

Because of the versatility of their approach—it can be used with a wide range of ions tailored to the task at hand—it is expected to have broad application in nanotechnology both for carving smaller features on semiconductors than now are possible and for nondestructive imaging of nanoscale structures with finer resolution than currently possible with electron microscopes.

Researchers and manufacturers routinely use intense, focused beams of ions to carve nanometer-sized features into a wide variety of targets. In principle, ion beams also could produce better images of nanoscale surface features than conventional electron microscopy. But the current technology for both applications is problematic. In the most widely used method, a metal-coated needle generates a narrowly focused beam of gallium ions. The high energies needed to focus gallium for milling tasks end up burying small amounts in the sample, contaminating the material. And because gallium ions are so heavy (comparatively speaking), if used to collect images they inadvertently damage the sample, blasting away some of its surface while it is being observed. Researchers have tried using other types of ions but were unable to produce the brightness or intensity necessary for the ion beam to cut into most materials.

The NIST team took a completely different approach to generating a focused ion beam that opens up the possibility for use of non-contaminating elements. Instead of starting with a sharp metal point, they generate a small "cloud" of atoms and then combine magnetic fields with laser light to trap and cool these atoms to extremely low temperatures. Another laser is used to ionize the atoms, and the charged particles are accelerated through a small hole to create a small but energetic beam of ions. Researchers have named the groundbreaking device "MOTIS," for "Magneto-Optical Trap Ion Source." (For more on MOTs, see "Bon MOT: Innovative Atom Trap Catches Highly Magnetic Atoms," NIST Tech Beat Apr. 1, 2008.)

"Because the lasers cool the atoms to a very low temperature, they're not moving around in random directions very much. As a result, when we accelerate them the ions travel in a highly parallel beam, which is necessary for focusing them down to a very small spot," explains Jabez McClelland of the NIST Center for Nanoscale Science and Technology. The team was able to measure the tiny spread of the beam and show that it was indeed small enough to allow the beam to be focused to a spot size less than 1 nanometer. The initial demonstration used chromium atoms, establishing that other elements besides gallium can achieve the brightness and intensity to work as a focused ion beam "nano-scalpel." The same technique, says McClelland, can be used with a wide variety of other atoms, which could be selected for special tasks such as milling nanoscale features without introducing contaminants, or to enhance contrast for ion beam microscopy.

* J. L. Hanssen, S. B. Hill, J. Orloff and J. J. McClelland. Magneto-optical trap-based, high brightness ion source for use as a nanoscale probe. Nano Letters 8, 2844 (2008).

Mark Bello | EurekAlert!
Further information:
http://www.nist.gov

More articles from Physics and Astronomy:

nachricht Basque researchers turn light upside down
23.02.2018 | Elhuyar Fundazioa

nachricht Attoseconds break into atomic interior
23.02.2018 | Max-Planck-Institut für Quantenoptik

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>