Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Coiled Nanowires May Hold Key To Stretchable Electronics

12.01.2011
Researchers at North Carolina State University have created the first coils of silicon nanowire on a substrate that can be stretched to more than double their original length, moving us closer to incorporating stretchable electronic devices into clothing, implantable health-monitoring devices, and a host of other applications.

“In order to create stretchable electronics, you need to put electronics on a stretchable substrate, but electronic materials themselves tend to be rigid and fragile,” says Dr. Yong Zhu, one of the researchers who created the new nanowire coils and an assistant professor of mechanical and aerospace engineering at NC State. “Our idea was to create electronic materials that can be tailored into coils to improve their stretchability without harming the electric functionality of the materials.”

Zhu's research team has created the first coils of silicon nanowire on a substrate that can be stretched to more than double their original length, moving us closer to developing stretchable electronic devices.

Other researchers have experimented with “buckling” electronic materials into wavy shapes, which can stretch much like the bellows of an accordion. However, Zhu says, the maximum strains for wavy structures occur at localized positions – the peaks and valleys – on the waves. As soon as the failure strain is reached at one of the localized positions, the entire structure fails.

“An ideal shape to accommodate large deformation would lead to a uniform strain distribution along the entire length of the structure – a coil spring is one such ideal shape,” Zhu says. “As a result, the wavy materials cannot come close to the coils’ degree of stretchability.” Zhu notes that the coil shape is energetically favorable only for one-dimensional structures, such as wires.

Zhu’s team put a rubber substrate under strain and used very specific levels of ultraviolet radiation and ozone to change its mechanical properties, and then placed silicon nanowires on top of the substrate. The nanowires formed coils upon release of the strain. Other researchers have been able to create coils using freestanding nanowires, but have so far been unable to directly integrate those coils on a stretchable substrate.

While the new coils’ mechanical properties allow them to be stretched an additional 104 percent beyond their original length, their electric performance cannot hold reliably to such a large range, possibly due to factors like contact resistance change or electrode failure, Zhu says. “We are working to improve the reliability of the electrical performance when the coils are stretched to the limit of their mechanical stretchability, which is likely well beyond 100 percent, according to our analysis.”

A paper describing the research, “Controlled 3D Buckling of Silicon Nanowires for Stretchable Electronics,” was published online Dec. 28 by ACS Nano. The paper is co-authored by Zhu, NC State Ph.D. student Feng Xu and Wei Lu, an assistant professor at the University of Michigan. The research was funded by the National Science Foundation.

NC State’s Department of Mechanical and Aerospace Engineering is part of the university’s College of Engineering.

-shipman-

Note to editors: The study abstract follows.

“Controlled 3D Buckling of Silicon Nanowires for Stretchable Electronics”

Authors: Feng Xu, Yong Zhu, North Carolina State University; Wei Lu, University of Michigan

Published: online Dec. 28, 2010, ACS Nano

Abstract: Silicon (Si) nanowire (NW) coils were fabricated on elastomeric substrates by a controlled buckling process. Si NWs were first transferred onto prestrained and ultraviolet/ozone (UVO) treated poly(dimethylsiloxane) (PDMS) substrates, and buckled upon release of the prestrain. Two buckling modes (the in-plane wavy mode and the three-dimensional coiled mode) were found; a transition between them was achieved by controlling the UVO treatment of PDMS. Structural characterization revealed that the NW coils were oval-shaped. The oval-shaped NW coils exhibited very large stretchability up to the failure strain of PDMS (~104% in our study). Such a large stretchability relies on the effectiveness of the coil shape in mitigating the maximum local strain, with a mechanics that is similar to the motion of a coil spring. Single-NW devices based on coiled NWs were demonstrated with a nearly constant electrical response in a large strain range. In addition to the wavy shape, the coil shape represents an effective architecture in accommodating large tension, compression, bending and twist, which may find important applications for stretchable electronics and other stretchable technologies.

Matt Shipman | EurekAlert!
Further information:
http://www.ncsu.edu
http://news.ncsu.edu/releases/wmszhunanocoils/

More articles from Physics and Astronomy:

nachricht Squeezing light at the nanoscale
17.06.2018 | Harvard John A. Paulson School of Engineering and Applied Sciences

nachricht The Fraunhofer IAF is a »Landmark in the Land of Ideas«
15.06.2018 | Fraunhofer-Institut für Angewandte Festkörperphysik IAF

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

Im Focus: Photoexcited graphene puzzle solved

A boost for graphene-based light detectors

Light detection and control lies at the heart of many modern device applications, such as smartphone cameras. Using graphene as a light-sensitive material for...

Im Focus: Water is not the same as water

Water molecules exist in two different forms with almost identical physical properties. For the first time, researchers have succeeded in separating the two forms to show that they can exhibit different chemical reactivities. These results were reported by researchers from the University of Basel and their colleagues in Hamburg in the scientific journal Nature Communications.

From a chemical perspective, water is a molecule in which a single oxygen atom is linked to two hydrogen atoms. It is less well known that water exists in two...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

A sprinkle of platinum nanoparticles onto graphene makes brain probes more sensitive

15.06.2018 | Materials Sciences

100 % Organic Farming in Bhutan – a Realistic Target?

15.06.2018 | Ecology, The Environment and Conservation

Perovskite-silicon solar cell research collaboration hits 25.2% efficiency

15.06.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>