Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Coiled Nanowires May Hold Key To Stretchable Electronics

12.01.2011
Researchers at North Carolina State University have created the first coils of silicon nanowire on a substrate that can be stretched to more than double their original length, moving us closer to incorporating stretchable electronic devices into clothing, implantable health-monitoring devices, and a host of other applications.

“In order to create stretchable electronics, you need to put electronics on a stretchable substrate, but electronic materials themselves tend to be rigid and fragile,” says Dr. Yong Zhu, one of the researchers who created the new nanowire coils and an assistant professor of mechanical and aerospace engineering at NC State. “Our idea was to create electronic materials that can be tailored into coils to improve their stretchability without harming the electric functionality of the materials.”

Zhu's research team has created the first coils of silicon nanowire on a substrate that can be stretched to more than double their original length, moving us closer to developing stretchable electronic devices.

Other researchers have experimented with “buckling” electronic materials into wavy shapes, which can stretch much like the bellows of an accordion. However, Zhu says, the maximum strains for wavy structures occur at localized positions – the peaks and valleys – on the waves. As soon as the failure strain is reached at one of the localized positions, the entire structure fails.

“An ideal shape to accommodate large deformation would lead to a uniform strain distribution along the entire length of the structure – a coil spring is one such ideal shape,” Zhu says. “As a result, the wavy materials cannot come close to the coils’ degree of stretchability.” Zhu notes that the coil shape is energetically favorable only for one-dimensional structures, such as wires.

Zhu’s team put a rubber substrate under strain and used very specific levels of ultraviolet radiation and ozone to change its mechanical properties, and then placed silicon nanowires on top of the substrate. The nanowires formed coils upon release of the strain. Other researchers have been able to create coils using freestanding nanowires, but have so far been unable to directly integrate those coils on a stretchable substrate.

While the new coils’ mechanical properties allow them to be stretched an additional 104 percent beyond their original length, their electric performance cannot hold reliably to such a large range, possibly due to factors like contact resistance change or electrode failure, Zhu says. “We are working to improve the reliability of the electrical performance when the coils are stretched to the limit of their mechanical stretchability, which is likely well beyond 100 percent, according to our analysis.”

A paper describing the research, “Controlled 3D Buckling of Silicon Nanowires for Stretchable Electronics,” was published online Dec. 28 by ACS Nano. The paper is co-authored by Zhu, NC State Ph.D. student Feng Xu and Wei Lu, an assistant professor at the University of Michigan. The research was funded by the National Science Foundation.

NC State’s Department of Mechanical and Aerospace Engineering is part of the university’s College of Engineering.

-shipman-

Note to editors: The study abstract follows.

“Controlled 3D Buckling of Silicon Nanowires for Stretchable Electronics”

Authors: Feng Xu, Yong Zhu, North Carolina State University; Wei Lu, University of Michigan

Published: online Dec. 28, 2010, ACS Nano

Abstract: Silicon (Si) nanowire (NW) coils were fabricated on elastomeric substrates by a controlled buckling process. Si NWs were first transferred onto prestrained and ultraviolet/ozone (UVO) treated poly(dimethylsiloxane) (PDMS) substrates, and buckled upon release of the prestrain. Two buckling modes (the in-plane wavy mode and the three-dimensional coiled mode) were found; a transition between them was achieved by controlling the UVO treatment of PDMS. Structural characterization revealed that the NW coils were oval-shaped. The oval-shaped NW coils exhibited very large stretchability up to the failure strain of PDMS (~104% in our study). Such a large stretchability relies on the effectiveness of the coil shape in mitigating the maximum local strain, with a mechanics that is similar to the motion of a coil spring. Single-NW devices based on coiled NWs were demonstrated with a nearly constant electrical response in a large strain range. In addition to the wavy shape, the coil shape represents an effective architecture in accommodating large tension, compression, bending and twist, which may find important applications for stretchable electronics and other stretchable technologies.

Matt Shipman | EurekAlert!
Further information:
http://www.ncsu.edu
http://news.ncsu.edu/releases/wmszhunanocoils/

More articles from Physics and Astronomy:

nachricht NASA spacecraft investigate clues in radiation belts
28.03.2017 | NASA/Goddard Space Flight Center

nachricht Researchers create artificial materials atom-by-atom
28.03.2017 | Aalto University

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Transport of molecular motors into cilia

28.03.2017 | Life Sciences

A novel hybrid UAV that may change the way people operate drones

28.03.2017 | Information Technology

NASA spacecraft investigate clues in radiation belts

28.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>