Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cluster Mission Indicates Turbulent Eddies May Warm the Solar Wind

09.01.2013
The sun ejects a continuous flow of electrically charged particles and magnetic fields in the form of the solar wind -- and this wind is hotter than it should be. A new study of data obtained by European Space Agency's Cluster spacecraft may help explain the mystery.

The solar wind is made of an electrically-charged gas called plasma. One theory about the wind's puzzling high temperatures is that irregularities in the flow of charged particles and magnetic fields in the plasma create turbulence, which, in turn, dissipates and adds heat to its surroundings.


A 2-dimensional vision of the solar wind turbulence at the smallest scale seen yet, thanks to observations by Cluster satellites. The approximate location of the measurements is indicated on a graphic illustrating features of Earth’s magnetic environment. The inset shows conditions as would be seen facing the solar wind, with current sheets forming at the border of turbulent eddies. The trajectory of the Cluster spacecraft is marked on the inset by the black line and the color gradients represent the magnetic field strength intensity.
Background graphic: ESA/ATG Medialab
Inset: NASA/J. Dorelli

Using two separate sets of data sent back by Cluster, an international team of scientists has probed the spatial characteristics of this turbulence in more detail and at smaller scales than ever before. They saw evidence that the turbulence evolved to form very small “current sheets” -- thin sheets of electrical current that separate regions of rotated magnetic field.

“For the first time, we were able to obtain direct evidence for the existence of current sheets at these very small scales, where dissipation of magnetic energy into heat is thought to occur,” said Melvyn Goldstein, project scientist for Cluster at NASA’s Goddard Space Flight Center in Greenbelt, Md. Goldstein is a co-author of a paper on these results that appeared in the Nov. 9, 2012, issue of Physical Review Letters.

This solar wind is a non-stop gale of plasma, mainly protons and electrons, which originates in the sun’s searingly hot lower atmosphere. It blasts outward in all directions at an average speed of about 250 miles per second. The outflow is so energetic that it pulls along the sun’s magnetic field. The solar wind travels across the entire solar system, until it reaches the boundary with interstellar space. The plasma cools as it expands during its outward journey. However, the amount of cooling is much less than would be expected in a constant, smooth flow of solar particles since the density is so low that the particles cannot be receiving extra heat from the most common method on Earth: collisions.

By providing the first observations of these small current sheets, the Cluster data help confirm that such sheets may play an important role in the dissipation of the turbulence – meaning that as the turbulence cascades from larger disturbances to smaller ones, energy is taken out of the magnetic field and added to its surroundings as heat. The current sheets are more or less two-dimensional. They may are also be sites where the magnetic field lines reconnect and break, resulting in a transfer of energy to both particle heating and particle flows. Such magnetic reconnection occurs in many regions in the universe including in the solar wind, inside the sun and other stars, and in Earth’s magnetic environment, the magnetosphere. Finding direct evidence for magnetic reconnection at these scales is difficult with the present instrumentation, however, and resolution of that question may have to await the launch of NASA’s Magnetospheric Multiscale (MMS) mission in 2014, a mission that will focus on reconnection in the magnetosphere.

The team’s study made use of the high time resolution of the Spatio Temporal Analysis Field Fluctuation (STAFF) magnetometer, which is carried on each of the four Cluster spacecraft. STAFF is capable of detecting rapid variations in magnetic fields, which means that very small spatial structures can be recognized within the plasma.

The scientists examined two sets of STAFF observations. The first data were obtained on Jan. 10, 2004, when two Cluster spacecraft (C2 and C4) were separated along the solar wind flow direction by only 12 miles apart, while the two other spacecraft were much further away. At that time, STAFF was operating in rapid burst mode, during which it recorded 450 measurements of the magnetic field per second. Additional data were obtained by a single spacecraft (Cluster 2) on March 19, 2006.

"During the 2004 observation, both spacecraft were so close that they observed almost simultaneously the same structure in the solar wind as it passed them by. The magnetic field data showed the typical signature of a current sheet crossing," says Silvia Perri of the Università della Calabria, Italy, who is the lead author of the paper. At that time, the solar wind was flowing at about 350 miles per second. The current sheet event lasted only 0.07 seconds for both satellites and this corresponds to a spatial size of about 25 miles.

“This shows for the first time that the solar wind plasma is extremely structured at these very small scales,” says Perri. “It is clear that we are seeing a release of energy approaching smaller and smaller scales, which may contribute to the overall heating of the solar wind.”

For more information about NASA's MMS Mission, visit:
http://mms.gsfc.nasa.gov/
ESA and Karen C. Fox
NASA Goddard Space Flight Center, Greenbelt, MD

Karen C. Fox | EurekAlert!
Further information:
http://mms.gsfc.nasa.gov/
http://www.nasa.gov

More articles from Physics and Astronomy:

nachricht NASA Protects its super heroes from space weather
17.08.2017 | NASA/Johnson Space Center

nachricht New thruster design increases efficiency for future spaceflight
16.08.2017 | American Institute of Physics

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Climate change: In their old age, trees still accumulate large quantities of carbon

17.08.2017 | Earth Sciences

Modern genetic sequencing tools give clearer picture of how corals are related

17.08.2017 | Life Sciences

Superconductivity research reveals potential new state of matter

17.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>