Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New clues to air circulation in the atmosphere

22.08.2008
Air circulates above the Earth in four distinct cells, with two either side of the equator, says new research out today (21 August) in Science.

The new observational study describes how air rises and falls in the atmosphere above the Earth’s surface, creating the world’s weather. This process of atmospheric circulation creates weather patterns and influences the climate of the planet. It is important to understand these processes in order to predict weather events, and to improve and test climate models.

Previous theories have claimed that there are just two large circular systems of air in the atmosphere, one either side of the equator. These theories suggested that air rises at the equator and then travels towards either the north or south polar regions, where it falls.

The new research suggests instead that there are two cells in both the northern and southern hemispheres. In the first cell, air rises at the equator and then falls in the subtropics. In the second cell, air rises in the mid-latitudes - approximately 30 to 60 degrees north and south of the equator – and then falls in the polar regions.

The researchers say that this second cell of rising air is a mechanism responsible for setting the distribution of temperature and winds in the mid-latitudes which has not been fully appreciated before. The mid-latitudes include the UK, Europe and most of the United States.

Dr Arnaud Czaja from Imperial College London’s Department of Physics and the Grantham Institute for Climate Change, one of the authors of the new research, explains: “Our model suggests that there is a second cell of air in each hemisphere which is characterised by air rising, clouds forming, storms developing and other processes associated with moisture in the air occurring in the mid-latitudes.”

Current theories to describe weather patterns in the mid-latitudes do not take these moisture-based processes into consideration. Dr Czaja argues that these theories are therefore incomplete, and that water vapour plays as much of an important role in the weather systems of the mid-latitudes as it does in the tropics, where it is a well-documented driver of weather events.

The research team carried out their study by conducting new analyses of extensive meteorological data. Dr Czaja says that he hopes the research will lead to a more detailed understanding of how air circulation in our atmosphere works, and how it affects the weather:

“With more attention than ever before being focused on understanding our planet’s climate, weather systems and atmosphere, it’s important that scientists challenge their own assumptions and current theories of how these complex processes work. I think our study sheds new light on the driving forces behind the weather in the mid-latitudes,” Dr Czaja added.

Danielle Reeves | alfa
Further information:
http://www.imperial.ac.uk

More articles from Physics and Astronomy:

nachricht Studying fundamental particles in materials
17.01.2017 | Max-Planck-Institut für Struktur und Dynamik der Materie

nachricht Seeing the quantum future... literally
16.01.2017 | University of Sydney

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

17.01.2017 | Materials Sciences

Smart homes will “LISTEN” to your voice

17.01.2017 | Architecture and Construction

VideoLinks
B2B-VideoLinks
More VideoLinks >>>