Clot-Busters, Caught on Tape

Christopher Acconcia<br><br>Time lapse image of a bubble (purple) burrowing into the network of a clot. The bubble is initially at rest in the fluid next to the clot. Exposure to ultrasound causes the bubble to shoot from left to right, penetrating the clot and causing damage to it in the process.<br>

Ultrasound-stimulated microbubbles have been showing promise in recent years as a non-invasive way to break up dangerous blood clots. But though many researchers have studied the effectiveness of this technique, not much was understood about why it works.

Now a team of researchers in Toronto has collected the first direct evidence showing how these wiggling microbubbles cause a blood clot’s demise. The team’s findings are featured in the AIP Publishing journal Applied Physics Letters.

Previous work on this technique, which is called sonothrombolysis, has focused on indirect indications of its effectiveness, including how much a blood clot shrinks or how well blood flow is restored following the procedure. The Toronto team, which included researchers from the University of Toronto and the Sunnybrook Research Institute, tried to catch the clot-killing process in action. Using high-speed photography and a 3-D microscopy technique, researchers discovered that stimulating the microbubbles with ultrasonic pulses pushes the bubbles toward the clots. The bubbles deform the clots’ boundaries then begin to burrow into them, creating fluid-filled tunnels that break the clots up from the inside out.

These improvements in the understanding of how sonothrombolysis works will help researchers develop more sophisticated methods of breaking up blood clots, said lead author Christopher Acconcia.

Efforts so far “may only be scratching the surface with respect to effectiveness,” said Acconcia. “Our findings provide a tool that can be used to develop more sophisticated sonothrombolysis techniques, which may lead to new tools to safely and efficiently dissolve clots in a clinical setting.”

The article, “Interactions between ultrasound stimulated microbubbles and fibrin clots” by Christopher Acconcia, Ben Y. C. Leung, Kullervo Hynynen and David E. Goertz appears in the journal Applied Physics Letters. See: http://dx.doi.org/10.1063/1.4816750

ABOUT THE JOURNAL
Applied Physics Letters features concise, rapid reports on significant new findings in applied physics. The journal covers new experimental and theoretical research on applications of physics phenomena related to all branches of science, engineering, and modern technology.

Media Contact

Jason Socrates Bardi Newswise

More Information:

http://apl.aip.org

All latest news from the category: Physics and Astronomy

This area deals with the fundamental laws and building blocks of nature and how they interact, the properties and the behavior of matter, and research into space and time and their structures.

innovations-report provides in-depth reports and articles on subjects such as astrophysics, laser technologies, nuclear, quantum, particle and solid-state physics, nanotechnologies, planetary research and findings (Mars, Venus) and developments related to the Hubble Telescope.

Back to home

Comments (0)

Write a comment

Newest articles

Properties of new materials for microchips

… can now be measured well. Reseachers of Delft University of Technology demonstrated measuring performance properties of ultrathin silicon membranes. Making ever smaller and more powerful chips requires new ultrathin…

Floating solar’s potential

… to support sustainable development by addressing climate, water, and energy goals holistically. A new study published this week in Nature Energy raises the potential for floating solar photovoltaics (FPV)…

Skyrmions move at record speeds

… a step towards the computing of the future. An international research team led by scientists from the CNRS1 has discovered that the magnetic nanobubbles2 known as skyrmions can be…

Partners & Sponsors