Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Closest Look Ever at the Edge of a Black Hole

05.09.2008
Astronomers have taken the closest look ever at the giant black hole in the center of the Milky Way. By combining telescopes in Hawaii, Arizona, and California, they detected structure at a tiny angular scale of 37 micro-arcseconds - the equivalent of a baseball seen on the surface of the moon, 240,000 miles distant.

"This technique gives us an unmatched view of the region near the Milky Way's central black hole," said Sheperd Doeleman of MIT, first author of the study that will be published in the Sept. 4 issue of the journal Nature.

"No one has seen such a fine-grained view of the galactic center before," agreed co-author Jonathan Weintroub of the Harvard-Smithsonian Center for Astrophysics (CfA). "We've observed nearly to the scale of the black hole event horizon - the region inside of which nothing, including light, can ever escape."

Using a technique called Very Long Baseline Interferometry (VLBI), a team of astronomers led by Doeleman employed an array of telescopes to study radio waves coming from the object known as Sagittarius A* (A-star). In VLBI, signals from multiple telescopes are combined to create the equivalent of a single giant telescope, as large as the separation between the facilities. As a result, VLBI yields exquisitely sharp resolution.

The Sgr A* radio emission, at a wavelength of 1.3 mm, escapes the galactic center more easily than emissions at longer wavelengths, which tend to suffer from interstellar scattering. Such scattering acts like fog around a streetlamp, both dimming the light and blurring details. VLBI is ordinarily limited to wavelengths of 3.5 mm and longer; however, using innovative instrumentation and analysis techniques, the team was able to tease out this remarkable result from 1.3-mm VLBI data.

The team clearly discerned structure with a 37 micro-arcsecond angular scale, which corresponds to a size of about 30 million miles (or about one-third the earth-sun distance) at the galactic center. With three telescopes, the astronomers could only vaguely determine the shape of the emitting region. Future investigations will help answer the question of what, precisely, they are seeing: a glowing corona around the black hole, an orbiting "hot spot," or a jet of material. Nevertheless, their result represents the first time that observations have gotten down to the scale of the black hole itself, which has a "Schwarzschild radius" of 10 million miles.

"This pioneering paper demonstrates that such observations are feasible," commented theorist Avi Loeb of Harvard University, who is not a member of the discovery team. "It also opens up a new window for probing the structure of space and time near a black hole and testing Einstein's theory of gravity."

In 2006, Loeb and his colleague, Avery Broderick, examined how ultra-high-resolution imaging of the galactic center could be used to look for the shadow or silhouette of the supermassive black hole lurking there, as well as any "hot spots" within material flowing into the black hole. Astronomers now are poised to test those theoretical predictions.

"This result, which is remarkable in and of itself, also confirms that the 1.3-mm VLBI technique has enormous potential, both for probing the galactic center and for studying other phenomena at similar small scales," said Weintroub.

The team plans to expand their work by developing novel instrumentation to make more sensitive 1.3-mm observations possible. They also hope to develop additional observing stations, which would provide additional baselines (pairings of two telescope facilities at different locations) to enhance the detail in the picture. Future plans also include observations at shorter, 0.85-mm wavelengths; however, such work will be even more challenging for many reasons, including stretching the capabilities of the instrumentation, and the requirement for a coincidence of excellent weather conditions at all sites.

"The technical capabilities that have been developed for the Smithsonian's Submillimeter Array on Mauna Kea are a crucial contribution to this program," said Jim Moran, one of the CfA participants in this work.

Other CfA or former CfA researchers who participated on the project include Ken Young and Dan Marrone.

Headquartered in Cambridge, Mass., the Harvard-Smithsonian Center for Astrophysics (CfA) is a joint collaboration between the Smithsonian Astrophysical Observatory and the Harvard College Observatory. CfA scientists, organized into six research divisions, study the origin, evolution and ultimate fate of the universe.

For more information, contact:

David A. Aguilar
Director of Public Affairs
Harvard-Smithsonian Center for Astrophysics
617-495-7462
daguilar@cfa.harvard.edu
Christine Pulliam
Public Affairs Specialist
Harvard-Smithsonian Center for Astrophysics
617-495-7463
cpulliam@cfa.harvard.edu

David Aguilar | EurekAlert!
Further information:
http://www.cfa.harvard.edu

More articles from Physics and Astronomy:

nachricht Pulses of electrons manipulate nanomagnets and store information
21.07.2017 | American Institute of Physics

nachricht Vortex photons from electrons in circular motion
21.07.2017 | National Institutes of Natural Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>