Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Climate change and atmospheric circulation will make for uneven ozone recovery

15.04.2009
Earth's ozone layer should eventually recover from the unintended destruction brought on by the use of chlorofluorocarbons (CFCs) and similar ozone-depleting chemicals in the 20th century. But new research by NASA scientists suggests the ozone layer of the future is unlikely to look much like the past because greenhouse gases are changing the dynamics of the atmosphere.

Previous studies have shown that while the buildup of greenhouse gases makes it warmer in troposphere – the level of atmosphere from Earth's surface up to 10 kilometers (6 miles) altitude – it actually cools the upper stratosphere – between 30 to 50 kilometers high (18 to 31 miles).

This cooling slows the chemical reactions that deplete ozone in the upper stratosphere and allows natural ozone production in that region to outpace destruction by CFCs.

But the accumulation of greenhouse gases also changes the circulation of stratospheric air masses from the tropics to the poles, NASA scientists note. In Earth's middle latitudes, that means ozone is likely to "over-recover," growing to concentrations higher than they were before the mass production of CFCs. In the tropics, stratospheric circulation changes could prevent the ozone layer from fully recovering.

"Most studies of ozone and global change have focused on cooling in the upper stratosphere," said Feng Li, an atmospheric scientist at the Goddard Earth Sciences and Technology Center at the University of Maryland Baltimore County, Baltimore, Md. and lead author of the study. "But we find circulation is just as important. It's not one process or the other, but both."

The findings are based on a detailed computer model that includes atmospheric chemical effects, wind changes, and solar radiation changes. Li's experiment is part of an ongoing international effort organized by the United Nations Environment Programme's Scientific Assessment Panel to assess the state of the ozone layer. Li and colleagues published their analysis in March in the journal Atmospheric Chemistry and Physics.

Working with Richard Stolarski and Paul Newman of NASA's Goddard Space Flight Center, Greenbelt, Md., Li adapted the Goddard Earth Observing System Chemistry-Climate Model (GEOS-CCM) to examine how climate change will affect ozone recovery. The team inserted past measurements and future projections of ozone-depleting substances and greenhouse gases into the model. Then the model projected how ozone, the overall chemistry, and the dynamics of the stratosphere would change through the year 2100.

"In the real world, we have observed statistically significant turnaround in ozone depletion, which can be attributed to the banning of ozone-depleting substances," said Richard Stolarski, an atmospheric chemist at Goddard and a co-author of the study. "But making that connection is complicated by the response of ozone to greenhouse gases."

The researchers found that greenhouse gases alter a natural circulation pattern that influences ozone distribution. Brewer-Dobson circulation is like a pump to the stratosphere, moving ozone from the lower parts of the atmosphere, into the upper stratosphere over the tropics. Air masses then flow north or south through the stratosphere, away from the tropics toward the poles.

In Li's experiment, this circulation pump accelerated to a rate where the ozone flowing upward and outward from the tropics created a surplus at middle latitudes. Though the concentration of chlorine and other ozone-depleting substances in the stratosphere will not return to pre-1980 levels until 2060, the ozone layer over middle latitudes recovered to pre-1980 levels by 2025.

The Arctic – which is better connected to mid-latitude air masses than the Antarctic -- benefitted from the surplus in the northern hemisphere and from the overall decline of ozone-depleting substances to recover by 2025. Globally averaged ozone and Antarctic concentrations catch up by 2040, as natural atmospheric production of ozone resumes.

This recovery in the middle and polar latitudes has mixed consequences, Li noted. It might have some benefits, such as lower levels of ultraviolet radiation reaching the Earth's surface and correspondingly lower rates of skin cancer. On the other hand, it could have unintended effects, such as increasing ozone levels in the troposphere, the layer of atmosphere at Earth's surface. The model also shows a continuing ozone deficit in the stratosphere over the tropics. In fact, when the model run ended at year 2100, the ozone layer over the tropics still showed no signs of recovery.

In February, researchers from Johns Hopkins University, Baltimore, teamed with Stolarski and other NASA scientists on a similar paper suggesting that increasing greenhouse gases would delay or even postpone the recovery of ozone levels in the lower stratosphere over some parts of the globe. Using the same model as Li, Stolarski, and Newman, the researchers found that the lower stratosphere over tropical and mid-southern latitudes might not return to pre-1980s levels of ozone for more than a century, if ever.

Sarah DeWitt | EurekAlert!
Further information:
http://www.nasa.gov
http://www.nasa.gov/topics/earth/features/ozone_recovery.html

More articles from Physics and Astronomy:

nachricht A tale of two pulsars' tails: Plumes offer geometry lessons to astronomers
18.01.2017 | Penn State

nachricht Studying fundamental particles in materials
17.01.2017 | Max-Planck-Institut für Struktur und Dynamik der Materie

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

A big nano boost for solar cells

18.01.2017 | Power and Electrical Engineering

Glass's off-kilter harmonies

18.01.2017 | Materials Sciences

Toward a 'smart' patch that automatically delivers insulin when needed

18.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>