Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Clearing the cosmic fog of the early universe: Massive stars may be responsible

13.10.2011
The space between the galaxies wasn't always transparent. In the earliest times, it was an opaque, dense fog. How it cleared is an important question in astronomy. New observational evidence from the University of Michigan shows how high energy light from massive stars could have been responsible.

Astronomers believed that early star-forming galaxies could have provided enough of the right kind of radiation to evaporate the fog, or turn the neutral hydrogen intergalactic medium into the charged hydrogen plasma that remains today. But they couldn't figure out how that radiation could escape a galaxy. Until now.

Jordan Zastrow, a doctoral astronomy student, and Sally Oey, a U-M astronomy professor, observed and imaged the relatively nearby NGC 5253, a dwarf starburst galaxy in the southern constellation Centaurus. Starburst galaxies, as their name implies, are undergoing a burst of intense star formation. While rare today, scientists believe they were very common in the early universe.

The researchers used special filters to see where and how the galaxy's extreme ultraviolet radiation, or UV light, was interacting with nearby gas. They found that the UV light is, indeed, evaporating gas in the interstellar medium. And it is doing so along a narrow cone emanating from the galaxy.

A paper on their work is published today (Oct. 12) in Astrophysical Journal Letters.

"We are not directly seeing the ultraviolet light. We are seeing its signature in the gas around the galaxy," Zastrow said.

In starburst galaxies, a superwind from these massive stars can clear a passageway through the gas in the galaxy, allowing the radiation to escape, the researchers said.

The shape of the cone they observed could help explain why similar processes in other galaxies have been difficult to detect.

"This feature is relatively narrow. The opening that is letting the UV light out is small, which makes this light challenging to detect. We can think of it as a lighthouse. If the lamp is pointed toward you, you can see the light. If it's pointed away from you, you can't see it," Zastrow said. "We believe the orientation of the galaxy is important as to whether we can detect escaping UV radiation."

The findings could help astronomers understand how the earliest galaxies affected the universe around them.

The paper is titled "An ionization cone in the dwarf starburst galaxy NGC 5253." Also contributing were researchers from the University of Maryland, MIT's Kavli Institute for Astrophysics and Space Research, and the University of California, Berkeley. The research is funded by the National Science Foundation. Observations were conducted with the Magellan Telescopes at Las Campanas Observatory in Chile.

Contact: Nicole Casal Moore
Phone: (734) 647-7087

Nicole Casal Moore | EurekAlert!
Further information:
http://www.umich.edu

More articles from Physics and Astronomy:

nachricht A 100-year-old physics problem has been solved at EPFL
23.06.2017 | Ecole Polytechnique Fédérale de Lausanne

nachricht Quantum thermometer or optical refrigerator?
23.06.2017 | National Institute of Standards and Technology (NIST)

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>