Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Clearing the cosmic fog of the early universe: Massive stars may be responsible

The space between the galaxies wasn't always transparent. In the earliest times, it was an opaque, dense fog. How it cleared is an important question in astronomy. New observational evidence from the University of Michigan shows how high energy light from massive stars could have been responsible.

Astronomers believed that early star-forming galaxies could have provided enough of the right kind of radiation to evaporate the fog, or turn the neutral hydrogen intergalactic medium into the charged hydrogen plasma that remains today. But they couldn't figure out how that radiation could escape a galaxy. Until now.

Jordan Zastrow, a doctoral astronomy student, and Sally Oey, a U-M astronomy professor, observed and imaged the relatively nearby NGC 5253, a dwarf starburst galaxy in the southern constellation Centaurus. Starburst galaxies, as their name implies, are undergoing a burst of intense star formation. While rare today, scientists believe they were very common in the early universe.

The researchers used special filters to see where and how the galaxy's extreme ultraviolet radiation, or UV light, was interacting with nearby gas. They found that the UV light is, indeed, evaporating gas in the interstellar medium. And it is doing so along a narrow cone emanating from the galaxy.

A paper on their work is published today (Oct. 12) in Astrophysical Journal Letters.

"We are not directly seeing the ultraviolet light. We are seeing its signature in the gas around the galaxy," Zastrow said.

In starburst galaxies, a superwind from these massive stars can clear a passageway through the gas in the galaxy, allowing the radiation to escape, the researchers said.

The shape of the cone they observed could help explain why similar processes in other galaxies have been difficult to detect.

"This feature is relatively narrow. The opening that is letting the UV light out is small, which makes this light challenging to detect. We can think of it as a lighthouse. If the lamp is pointed toward you, you can see the light. If it's pointed away from you, you can't see it," Zastrow said. "We believe the orientation of the galaxy is important as to whether we can detect escaping UV radiation."

The findings could help astronomers understand how the earliest galaxies affected the universe around them.

The paper is titled "An ionization cone in the dwarf starburst galaxy NGC 5253." Also contributing were researchers from the University of Maryland, MIT's Kavli Institute for Astrophysics and Space Research, and the University of California, Berkeley. The research is funded by the National Science Foundation. Observations were conducted with the Magellan Telescopes at Las Campanas Observatory in Chile.

Contact: Nicole Casal Moore
Phone: (734) 647-7087

Nicole Casal Moore | EurekAlert!
Further information:

More articles from Physics and Astronomy:

nachricht Move over, lasers: Scientists can now create holograms from neutrons, too
21.10.2016 | National Institute of Standards and Technology (NIST)

nachricht Finding the lightest superdeformed triaxial atomic nucleus
20.10.2016 | The Henryk Niewodniczanski Institute of Nuclear Physics Polish Academy of Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>