Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Clear skies on exo-Neptune

25.09.2014

Smallest exoplanet ever found to have water vapour

Astronomers using data from the NASA/ESA Hubble Space Telescope, the Spitzer Space Telescope, and the Kepler Space Telescope have discovered clear skies and steamy water vapour on a planet outside our Solar System. The planet, known as HAT-P-11b, is about the size of Neptune, making it the smallest exoplanet ever on which water vapour has been detected. The results will appear in the online version of the journal Nature on 24 September 2014.


Artist Illustration of planet HAT-P-11b

The discovery is a milestone on the road to eventually finding molecules in the atmospheres of smaller, rocky planets more akin to Earth. Clouds in the atmospheres of planets can block the view of what lies beneath them. The molecular makeup of these lower regions can reveal important information about the composition and history of a planet. Finding clear skies on a Neptune-size planet is a good sign that some smaller planets might also have similarly good visibility.

"When astronomers go observing at night with telescopes, they say 'clear skies' to mean good luck," said Jonathan Fraine of the University of Maryland, USA, lead author of the study. "In this case, we found clear skies on a distant planet. That's lucky for us because it means clouds didn't block our view of water molecules."

HAT-P-11b is a so-called exo-Neptune — a Neptune-sized planet that orbits another star. It is located 120 light-years away in the constellation of Cygnus (The Swan). Unlike Neptune, this planet orbits closer to its star, making one lap roughly every five days. It is a warm world thought to have a rocky core, a mantle of fluid and ice, and a thick gaseous atmosphere. Not much else was known about the composition of the planet, or other exo-Neptunes like it, until now.

Part of the challenge in analysing the atmospheres of planets like this is their size. Larger Jupiter-like planets are easier to observe and researchers have already been able to detect water vapour in the atmospheres of some of these giant planets. Smaller planets are more difficult to probe — and all the smaller ones observed to date have appeared to be cloudy.

The team used Hubble's Wide Field Camera 3 and a technique called transmission spectroscopy, in which a planet is observed as it crosses in front of its parent star. Starlight filters through the rim of the planet's atmosphere and into the telescope. If molecules like water vapour are present, they absorb some of the starlight, leaving distinct signatures in the light that reaches our telescopes.

"We set out to look at the atmosphere of HAT-P-11b without knowing if its weather would be cloudy or not," said Nikku Madhusudhan, from the University of Cambridge, UK, part of the study team. "By using transmission spectroscopy, we could use Hubble to detect water vapour in the planet. This told us that the planet didn't have thick clouds blocking the view and is a very hopeful sign that we can find and analyse more cloudless, smaller, planets in the future. It is groundbreaking!"

Before the team could celebrate they had to be sure that the water vapour was from the planet and not from cool starspots — "freckles" on the face of stars — on the parent star. Luckily, Kepler had been observing the patch of sky in which HAT-P-11b happens to lie for years. Those visible-light data were combined with targeted infrared Spitzer observations. By comparing the datasets the astronomers could confirm that the starspots were too hot to contain any water vapour, and so the vapour detected must belong to the planet.

The results from all three telescopes demonstrate that HAT-P-11b is blanketed in water vapour, hydrogen gas, and other yet-to-be-identified molecules. So in fact it is not only the smallest planet to have water vapour found in its atmosphere but is also the smallest planet for which molecules of any kind have been directly detected using spectroscopy [1]. Theorists will be drawing up new models to explain the planet's makeup and origins.

Although HAT-P-11b is dubbed as an exo-Neptune it is actually quite unlike any planet in our Solar System. It is thought that exo-Neptunes may have diverse compositions that reflect their formation histories. New findings such as this can help astronomers to piece together a theory for the origin of these distant worlds.

"We are working our way down the line, from hot Jupiters to exo-Neptunes," said Drake Deming, a co-author of the study also from University of Maryland, USA. "We want to expand our knowledge to a diverse range of exoplanets."

The astronomers plan to examine more exo-Neptunes in the future, and hope to apply the same method to smaller super-Earths — massive, rocky cousins to our home world with up to ten times the mass of Earth. Our Solar System does not contain a super-Earth, but other telescopes are finding them around other stars in droves and the NASA/ESA James Webb Space Telescope, scheduled to launch in 2018, will search super-Earths for signs of water vapour and other molecules. However, finding signs of oceans and potentially habitable worlds is likely a way off.

This work is important for future studies of super-Earths and even smaller planets. It could allow astronomers to pick out in advance the planets with atmospheres clear enough for molecules to be detected. Once again, astronomers will be crossing their fingers for clear skies.

Notes

[1] Molecular hydrogen has been inferred to exist in many planets, including planets smaller than HAT-P-11b, but no molecule has actually been detected, using spectroscopy, in a planet this small, until now.

Notes for editors

The Hubble Space Telescope is a project of international cooperation between ESA and NASA.

The international team of astronomers in this study consists of J. Fraine (University of Maryland, USA; Pontificia Universidad Católica de Chile, Chile; California Institute of Technology, USA); D. Deming (University of Maryland, USA; NASA Astrobiology Institute, USA); B. Benneke (California Institute of Technology, USA); H. Knutson (California Institute of Technology, USA); A. Jordán (Pontificia Universidad Católica de Chile, Chile); N. Espinoza (Pontificia Universidad Católica de Chile, Chile); N. Madhusudhan (University of Cambridge, UK); A. Wilkins (University of Maryland, USA); K. Todorov (ETH Zürich, Switzerland)

More information

Image credit: NASA/JPL-Caltech

Links

Contacts

Nikku Madhusudhan
University of Cambridge
United Kingdom
Tel: +1 617 475 5112
Cell: +44 7804 419140
Email: nmadhu@ast.cam.ac.uk

Jonathan Fraine
University of Maryland
USA
Tel: +1-301-405-1469
Email: jfraine@astro.umd.edu

Drake Deming
University of Maryland
USA
Tel: +1-301-405-8053
Email: ddeming@astro.umd.edu

Georgia Bladon
ESA/Hubble, Public Information Officer
Garching bei München, Germany
Cell: +44 7816291261
Email: gbladon@partner.eso.org

Georgia Bladon | ESA/Hubble Media Newsletter
Further information:
http://www.spacetelescope.org/news/heic1420/

Further reports about: Atmosphere ESA HAT-P-11b Hubble NASA Space Telescope Telescope spectroscopy water vapour

More articles from Physics and Astronomy:

nachricht Significantly more productivity in USP lasers
06.12.2016 | Fraunhofer-Institut für Lasertechnik ILT

nachricht Shape matters when light meets atom
05.12.2016 | Centre for Quantum Technologies at the National University of Singapore

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Robot on demand: Mobile machining of aircraft components with high precision

06.12.2016 | Power and Electrical Engineering

A new dead zone in the Indian Ocean could impact future marine nutrient balance

06.12.2016 | Earth Sciences

Significantly more productivity in USP lasers

06.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>