Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New class of black holes discovered

03.07.2009
A new class of black hole, more than 500 times the mass of the Sun, has been discovered by an international team of astronomers.

The finding in a distant galaxy approximately 290 million light years from Earth is reported today in the journal Nature.

Until now, identified black holes have been either super-massive (several million to several billion times the mass of the Sun) in the centre of galaxies, or about the size of a typical star (between three and 20 Solar masses).

The new discovery is the first solid evidence of a new class of medium-sized black holes. The team, led by astrophysicists at the Centre d'Etude Spatiale des Rayonnements in France, detected the new black hole with the European Space Agency's XMM-Newton X-ray space telescope.

"While it is widely accepted that stellar mass black holes are created during the death throes of massive stars, it is still unknown how super-massive black holes are formed," says the lead author of the paper, Dr Sean Farrell, now based at the Department of Physics and Astronomy at the University of Leicester.

He added: "One theory is that super-massive black holes may be formed by the merger of a number of intermediate mass black holes. To ratify such a theory, however, you must first prove the existence of intermediate black holes.

"This is the best detection to date of such long sought after intermediate mass black holes. Such a detection is essential. While it is already known that stellar mass black holes are the remnants of massive stars, the formation mechanisms of supermassive black holes are still unknown."

"The identification of HLX-1 is therefore an important step towards a better understanding of the formation of the super-massive black holes that exist at the centre of the Milky Way and other galaxies."

A black hole is a remnant of a collapsed star with such a powerful gravitational field that it absorbs all the light that passes near it and reflects nothing.

It had been long believed by astrophysicists that there might be a third, intermediate class of black holes, with masses between a hundred and several hundred thousand times that of the Sun. However, such black holes had not been reliably detected until now.

This new source, dubbed HLX-1 (Hyper-Luminous X-ray source 1), lies towards the edge of the galaxy ESO 243-49. It is ultra-luminous in X-rays, with a maximum X-ray brightness of approximately 260 million times that of the Sun.

The X-ray signature of HLX-1 and the lack of a counterpart in optical images confirm that it is neither a foreground star nor a background galaxy, and its position indicates that it is not the central engine of the host galaxy.

Using XMM-Newton observations carried out on the 23rd November 2004 and the 28th November 2008, the team showed that HLX-1 displayed a variation in its X-ray signature. This indicated that it must be a single object and not a group of many fainter sources. The huge radiance observed can only be explained if HLX-1 contains a black hole more than 500 times the mass of the Sun. No other physical explanation can account for the data.

The following funding acknowledgements from the authors appear at the end of the paper:

S.A.F acknowledges funding from the CNES. S.A.F. and O.G. acknowledge STFC funding. This work made use of the 2XMM Serendipitous Source Catalogue constructed by the XMM-Newton Survey Science Centre on behalf of ESA. We thank the Swift team for performing a TOO observation which provided justification for an additional observation with XMM-Newton. This work was based on observations obtained with XMM-Newton, an ESA science mission with instruments and contributions directly funded by ESA Member States and NASA.

The content of the press release and papers is embargoed until 1800 hrs (6pm) London time / 1300 US Eastern Time (please note changes due to Daylight Saving Time) on 01 July, the day before publication. Wire services stories must always carry the embargo time at the head of each item, and may not be sent out more than 24 hours before that time. Journalists should seek to credit the relevant Nature publication as the source of stories covered.

University of Leicester - Times Higher Education University of the Year 2008/09

Press Office Contact:
Ather Mirza
Press Office
Division of Marketing and Communications
University of Leicester
University Road
Leicester
LE1 7RH
tel: 0116 252 3335
email: pressoffice@le.ac.uk

Dr Sean Farrell | EurekAlert!
Further information:
http://www.le.ac.uk

More articles from Physics and Astronomy:

nachricht Breaking the optical bandwidth record of stable pulsed lasers
24.01.2017 | Institut national de la recherche scientifique - INRS

nachricht European XFEL prepares for user operation: Researchers can hand in first proposals for experiments
24.01.2017 | European XFEL GmbH

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists spin artificial silk from whey protein

X-ray study throws light on key process for production

A Swedish-German team of researchers has cleared up a key process for the artificial production of silk. With the help of the intense X-rays from DESY's...

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Breaking the optical bandwidth record of stable pulsed lasers

24.01.2017 | Physics and Astronomy

Choreographing the microRNA-target dance

24.01.2017 | Life Sciences

Spanish scientists create a 3-D bioprinter to print human skin

24.01.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>