Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


CHRIS satellite imager celebrates 7 years’ scientific success

The scientific community is celebrating 7 years of high resolution hyperspectral satellite imagery from the highly successful CHRIS multi-spectral payload imager.

The instrument has been so successful that an advanced variant is under development, offering new functionality for Earth observation missions in a wide range of applications in resource monitoring and mapping, environmental science and security.

CHRIS (Compact High Resolution Imaging Spectrometer) was developed by SSTL's Optical Payload Group (formerly Sira Space Group), and placed into orbit in October 2001 on the PROBA mission developed by the European Space Agency (ESA). The sophisticated optical earth imaging instrument recently passed its 7th year in orbit as the highest resolution civil hyperspectral instrument in space.

Data from CHRIS has been highly successful in development of new Earth observation applications, and is supporting 94 international Principal Investigators (PIs), acquiring images from over 240 sites in 43 countries for diverse scientific research.

Dr. Mike Cutter, SSTL Optical Payloads Group explained the importance and value of such instrumentation, "Hyperspectral instruments have been widely used on aircraft for mineral prospecting and resource management and the CHRIS instruments enable this capability to be used on a national and continental scale, which is critical both for efficient management of natural resources and for providing the information to determine the effects of climate change and mitigation measures."

SSTL’s subsidiary DMCii schedules and processes images captured by CHRIS for ESA. The data from the mission then used in a wide range of applications including land cover assessment, resource management, deforestation and forest management, precision farming, aerosol monitoring and water quality assessment. The mission also supports International Charter: Space and Major Disasters campaigns by providing high resolution optical imagery of disaster affected areas.

The CHRIS hyperspectral images have been in high demand over the past 7 years, and the PROBA / CHRIS mission has pioneered and validated techniques for future scientific and commercial imaging spectrometer missions. Another reason for the scientific demand is that images can be acquired at 5 different view angles for each site, on a single over pass, allowing both spectral and directional signatures to be captured.

The new, more advanced CHRIS-2 instrument expands upon this unique capability by including the short wave infra-red band (SWIR), which allows further valuable applications to be addressed including mineralogy, prospecting, crop health and pollution monitoring.

Hyperspectral imagers split the available light from a scene into a large range of channels, providing detailed information about the imagery content. Whereas the CHRIS instrument provided up to 62 channels in the visible band, the CHRIS-2 instrument extends this capability to over 200 bands, including the short-wave infra-red bands (SWIR). Placing such an instrument on a spacecraft provides global reach and supports national and international routine imaging campaigns efficiently.

SSTL will provide the CHRIS-2 instrument on future Earth observation missions or as a stand-alone payload for integration with third party satellite platforms.

Robin Wolstenholme | alfa
Further information:

More articles from Physics and Astronomy:

nachricht Finding the lightest superdeformed triaxial atomic nucleus
20.10.2016 | The Henryk Niewodniczanski Institute of Nuclear Physics Polish Academy of Sciences

nachricht Innovative technique for shaping light could solve bandwidth crunch
20.10.2016 | The Optical Society

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Innovative technique for shaping light could solve bandwidth crunch

20.10.2016 | Physics and Astronomy

Finding the lightest superdeformed triaxial atomic nucleus

20.10.2016 | Physics and Astronomy

NASA's MAVEN mission observes ups and downs of water escape from Mars

20.10.2016 | Physics and Astronomy

More VideoLinks >>>