Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

CHRIS satellite imager celebrates 7 years’ scientific success

10.11.2008
The scientific community is celebrating 7 years of high resolution hyperspectral satellite imagery from the highly successful CHRIS multi-spectral payload imager.

The instrument has been so successful that an advanced variant is under development, offering new functionality for Earth observation missions in a wide range of applications in resource monitoring and mapping, environmental science and security.

CHRIS (Compact High Resolution Imaging Spectrometer) was developed by SSTL's Optical Payload Group (formerly Sira Space Group), and placed into orbit in October 2001 on the PROBA mission developed by the European Space Agency (ESA). The sophisticated optical earth imaging instrument recently passed its 7th year in orbit as the highest resolution civil hyperspectral instrument in space.

Data from CHRIS has been highly successful in development of new Earth observation applications, and is supporting 94 international Principal Investigators (PIs), acquiring images from over 240 sites in 43 countries for diverse scientific research.

Dr. Mike Cutter, SSTL Optical Payloads Group explained the importance and value of such instrumentation, "Hyperspectral instruments have been widely used on aircraft for mineral prospecting and resource management and the CHRIS instruments enable this capability to be used on a national and continental scale, which is critical both for efficient management of natural resources and for providing the information to determine the effects of climate change and mitigation measures."

SSTL’s subsidiary DMCii schedules and processes images captured by CHRIS for ESA. The data from the mission then used in a wide range of applications including land cover assessment, resource management, deforestation and forest management, precision farming, aerosol monitoring and water quality assessment. The mission also supports International Charter: Space and Major Disasters campaigns by providing high resolution optical imagery of disaster affected areas.

The CHRIS hyperspectral images have been in high demand over the past 7 years, and the PROBA / CHRIS mission has pioneered and validated techniques for future scientific and commercial imaging spectrometer missions. Another reason for the scientific demand is that images can be acquired at 5 different view angles for each site, on a single over pass, allowing both spectral and directional signatures to be captured.

The new, more advanced CHRIS-2 instrument expands upon this unique capability by including the short wave infra-red band (SWIR), which allows further valuable applications to be addressed including mineralogy, prospecting, crop health and pollution monitoring.

Hyperspectral imagers split the available light from a scene into a large range of channels, providing detailed information about the imagery content. Whereas the CHRIS instrument provided up to 62 channels in the visible band, the CHRIS-2 instrument extends this capability to over 200 bands, including the short-wave infra-red bands (SWIR). Placing such an instrument on a spacecraft provides global reach and supports national and international routine imaging campaigns efficiently.

SSTL will provide the CHRIS-2 instrument on future Earth observation missions or as a stand-alone payload for integration with third party satellite platforms.

Robin Wolstenholme | alfa
Further information:
http://www.ballard.co.uk/sstl/
http://www.ballard.co.uk/press_releases/company_releases.aspx?story=1306

More articles from Physics and Astronomy:

nachricht Astronomers find unexpected, dust-obscured star formation in distant galaxy
24.03.2017 | University of Massachusetts at Amherst

nachricht Gravitational wave kicks monster black hole out of galactic core
24.03.2017 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Northern oceans pumped CO2 into the atmosphere

27.03.2017 | Earth Sciences

Fingerprint' technique spots frog populations at risk from pollution

27.03.2017 | Life Sciences

Big data approach to predict protein structure

27.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>