Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

China Joins Thirty Meter Telescope Project

18.11.2009
The National Astronomical Observatories of the Chinese Academy of Sciences (NAOC) has joined the Thirty Meter Telescope Project (TMT). As an Observer, China will participate in planning the development of what will be the world's most advanced and capable astronomical observatory.

"The TMT is delighted to take this exciting new step forward in our relationship with the National Astronomical Observatories of China," said Henry Yang, chairman of the TMT board and Chancellor of the University of California, Santa Barbara. "We appreciate their interest in contributing to this important international endeavor, and we look forward to continuing to work with the Chinese astronomical community in fostering China's collaboration in the TMT project."

"We believe that the Thirty Meter Telescope will provide an otherwise unattainable opportunity for the Chinese astronomical community to make significant discoveries, perform cutting-edge science, and advance technological development," said Jun Yan, director of the NAOC. "We believe our joint effort will foster a successful collaboration on this world-class project, and we hope to build high-technology, core components of the telescope.”

“As the first step in a three stage process, Observer Status provides a framework for the detailed discussions needed to establish full partnership in the construction and operation of TMT,” according to Edward Stone, vice chair of the TMT board and Caltech’s Morrisroe Professor of Physics.

“We warmly welcome our Chinese colleagues, who will expand the international involvement in the Thirty Meter Telescope Project,” said Professor Ray Carlberg, the Canadian Large Optical Telescope project director and a TMT board member. “This new collaboration broadens the pool of talent and demonstrates the interest of national governments in TMT.”

When completed in 2018, the TMT will be the first of the next-generation of ground-based optical observatories. This revolutionary telescope will integrate the latest innovations in precision control, segmented mirror design, and adaptive optics to correct for the blurring effect of Earth's atmosphere. Building on the success of the twin Keck telescopes, the core technology of TMT will be a 30-meter segmented primary mirror. This will give TMT nine times the collecting area of today's largest optical telescopes and three times sharper images.

The TMT has begun full-scale polishing of the 1.4-meter mirror blanks that will make up the primary mirror. TMT also has developed many of the essential prototype components for the telescope, including key adaptive optics technologies and the support and control elements for the 492 mirror segments.

The TMT project has completed its $77 million design development phase with primary financial support of $50 million from the Gordon and Betty Moore Foundation and $22 million from Canada. The project has now entered the early construction phase thanks to an additional $200 million pledge from the Gordon and Betty Moore Foundation. Caltech and the University of California have agreed to raise matching funds of $50 million to bring the construction total to $300 million, and the Canadian partners propose to supply the enclosure, the telescope structure, and the first light adaptive optics.

The TMT project is an international partnership among the California Institute of Technology, the University of California, and the Association of Canadian Universities for Research in Astronomy. The National Astronomical Observatory of Japan (NAOJ) joined TMT as a Collaborating Institution in 2008.

Animations of TMT can be found here:
http://www.tmt.org/gallery/animations.html
Illustrations “Courtesy of TMT Observatory Corporation” can be found here:
http://www.tmt.org/gallery/high-res.html

Charles E. Blue | Newswise Science News
Further information:
http://www.tmt.org
http://www.tmt.org/gallery/animations.html
http://www.tmt.org/gallery/high-res.html

More articles from Physics and Astronomy:

nachricht New type of smart windows use liquid to switch from clear to reflective
14.12.2017 | The Optical Society

nachricht New ultra-thin diamond membrane is a radiobiologist's best friend
14.12.2017 | American Institute of Physics

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Plasmonic biosensors enable development of new easy-to-use health tests

14.12.2017 | Health and Medicine

New type of smart windows use liquid to switch from clear to reflective

14.12.2017 | Physics and Astronomy

BigH1 -- The key histone for male fertility

14.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>