Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

China Joins Thirty Meter Telescope Project

18.11.2009
The National Astronomical Observatories of the Chinese Academy of Sciences (NAOC) has joined the Thirty Meter Telescope Project (TMT). As an Observer, China will participate in planning the development of what will be the world's most advanced and capable astronomical observatory.

"The TMT is delighted to take this exciting new step forward in our relationship with the National Astronomical Observatories of China," said Henry Yang, chairman of the TMT board and Chancellor of the University of California, Santa Barbara. "We appreciate their interest in contributing to this important international endeavor, and we look forward to continuing to work with the Chinese astronomical community in fostering China's collaboration in the TMT project."

"We believe that the Thirty Meter Telescope will provide an otherwise unattainable opportunity for the Chinese astronomical community to make significant discoveries, perform cutting-edge science, and advance technological development," said Jun Yan, director of the NAOC. "We believe our joint effort will foster a successful collaboration on this world-class project, and we hope to build high-technology, core components of the telescope.”

“As the first step in a three stage process, Observer Status provides a framework for the detailed discussions needed to establish full partnership in the construction and operation of TMT,” according to Edward Stone, vice chair of the TMT board and Caltech’s Morrisroe Professor of Physics.

“We warmly welcome our Chinese colleagues, who will expand the international involvement in the Thirty Meter Telescope Project,” said Professor Ray Carlberg, the Canadian Large Optical Telescope project director and a TMT board member. “This new collaboration broadens the pool of talent and demonstrates the interest of national governments in TMT.”

When completed in 2018, the TMT will be the first of the next-generation of ground-based optical observatories. This revolutionary telescope will integrate the latest innovations in precision control, segmented mirror design, and adaptive optics to correct for the blurring effect of Earth's atmosphere. Building on the success of the twin Keck telescopes, the core technology of TMT will be a 30-meter segmented primary mirror. This will give TMT nine times the collecting area of today's largest optical telescopes and three times sharper images.

The TMT has begun full-scale polishing of the 1.4-meter mirror blanks that will make up the primary mirror. TMT also has developed many of the essential prototype components for the telescope, including key adaptive optics technologies and the support and control elements for the 492 mirror segments.

The TMT project has completed its $77 million design development phase with primary financial support of $50 million from the Gordon and Betty Moore Foundation and $22 million from Canada. The project has now entered the early construction phase thanks to an additional $200 million pledge from the Gordon and Betty Moore Foundation. Caltech and the University of California have agreed to raise matching funds of $50 million to bring the construction total to $300 million, and the Canadian partners propose to supply the enclosure, the telescope structure, and the first light adaptive optics.

The TMT project is an international partnership among the California Institute of Technology, the University of California, and the Association of Canadian Universities for Research in Astronomy. The National Astronomical Observatory of Japan (NAOJ) joined TMT as a Collaborating Institution in 2008.

Animations of TMT can be found here:
http://www.tmt.org/gallery/animations.html
Illustrations “Courtesy of TMT Observatory Corporation” can be found here:
http://www.tmt.org/gallery/high-res.html

Charles E. Blue | Newswise Science News
Further information:
http://www.tmt.org
http://www.tmt.org/gallery/animations.html
http://www.tmt.org/gallery/high-res.html

More articles from Physics and Astronomy:

nachricht Further Improvement of Qubit Lifetime for Quantum Computers
09.12.2016 | Forschungszentrum Jülich

nachricht Electron highway inside crystal
09.12.2016 | Julius-Maximilians-Universität Würzburg

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>