Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Chicago team uses artificial intelligence to diagnose metastatic cancer

30.07.2009
Results of pilot study to be presented at medical physics meeting in Anaheim

When doctors are managing care for women with breast cancer, the information available to them profoundly influences the type of care they recommend.

Knowing whether a woman's cancer has metastasized, for instance, directly affects how her doctors will approach treatment -- which may in turn influence the outcome of that treatment.

Determining whether a tumor has metastasized is not always straightforward, however. Radiologists often start by using diagnostic ultrasound to non-invasively probe the nearby lymph nodes -- tissues where cancer cells first migrate once they metastasize. But in the early stages of cancer, lymph nodes often appear completely normal even if the cancer has metastasized.

Now a team of researchers at the University of Chicago has designed a computer program that uses artificial intelligence to analyze the features of ultrasound images in order to help doctors predict earlier whether a woman's cancer has metastasized. The team will discuss the first preclinical results obtained using this program at the upcoming meeting of the American Association of Physicists in Medicine (AAPM), which takes place from July 26 - 30, 2009 in Anaheim, California.

Currently there are no automated methods approved by the Food and Drug Administration for diagnosing cancer, but on Wednesday the team will report the results of a preliminary pilot study that retrospectively reanalyzed the diagnostic ultrasounds of 50 women with suspected breast cancer who all had lymph nodes that appeared normal in the ultrasound -- suggesting that their cancers had not metastasized.

All 50 women later underwent surgery to remove their cancers and axillary lymph nodes, and tissue biopsies of the lymph nodes revealed that 20 of them had metastatic cancer and 30 of them had cancer that remained localized at the time of surgery.

The pilot study aimed to determine if the computer would have accurately identified the 20 metastatic cases based on analyzing the ultrasound images of the tumors.

The program performed promisingly well, says medical physicist Karen Drukker, a research associate and assistant professor in the department of radiology at the University of Chicago, who will be presenting results in Anaheim that demonstrate the program's potential for diagnosing metastatic disease.

"We discovered that a computer analysis of breast ultrasound could potentially predict with promising accuracy which patients had metastasis and which did not," says Drukker.

Next they plan to start an observer study in which several radiologists will use the computer program to see if it enhances their ability to diagnose metastasis -- again, based on retrospective cases for which the answer can later be revealed.

The talk, "Quantitative Image Analysis for Prognosis in Newly Diagnosed Breast Cancer Patients with Sonographically Normal Appearing Lymph Nodes" is at 1:54 p.m. on Wednesday, July 29 in Room 304A. More information: http://www.aapm.org/meetings/09AM/PRAbs.asp?mid=42&aid=10335

PRESS REGISTRATION

Journalists are welcome to attend the conference free of charge. AAPM will grant complimentary registration to any full-time or freelance journalist working on assignment. The Press guidelines are posted at: http://www.aapm.org/meetings/09AM/VirtualPressRoom/

If you are a reporter and would like to attend, please fill out the press registration form: http://www.aapm.org/meetings/09AM/VirtualPressRoom/documents/pressregform.pdf.

Questions about the meeting or requests for interviews, images, or background information should be directed to Jason Bardi (jbardi@aip.org, 858-775-4080).

RELATED LINKS

Main Meeting Web site: http://www.aapm.org/meetings/09AM/.
Search Meeting Abstracts: http://www.aapm.org/meetings/09AM/prsearch.asp?mid=42.
Meeting program: http://www.aapm.org/meetings/09AM/MeetingProgram.asp.
AAPM home page: http://www.aapm.org.
Background article about how medical physics has revolutionized medicine: http://www.newswise.com/articles/view/538208/.

ABOUT MEDICAL PHYSICISTS

If you ever had a mammogram, ultrasound, X-ray, MRI, PET scan, or known someone treated for cancer, chances are reasonable that a medical physicist was working behind the scenes to make sure the imaging procedure was as effective as possible. Medical physicists help to develop new imaging techniques, improve existing ones, and assure the safety of radiation used in medical procedures in radiology, radiation oncology and nuclear medicine. They collaborate with radiation oncologists to design cancer treatment plans. They provide routine quality assurance and quality control on radiation equipment and procedures to ensure that cancer patients receive the prescribed dose of radiation to the correct location. They also contribute to the development of physics intensive therapeutic techniques, such as the stereotactic radiosurgery and prostate seed implants for cancer to name a few. The annual AAPM meeting is a great resource, providing guidance to physicists to implement the latest and greatest technology in a community hospital close to you.

ABOUT AAPM

The American Association of Physicists in Medicine (AAPM) is a scientific, educational, and professional organization of more than 6,000 medical physicists. Headquarters are located at the American Center for Physics in College Park, MD. Publications include a scientific journal ("Medical Physics"), technical reports, and symposium proceedings. See: www.aapm.org.

Jason Bardi | EurekAlert!
Further information:
http://www.aip.org

More articles from Physics and Astronomy:

nachricht Engineering team images tiny quasicrystals as they form
18.08.2017 | Cornell University

nachricht Astrophysicists explain the mysterious behavior of cosmic rays
18.08.2017 | Moscow Institute of Physics and Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>