Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

ChemCam follows the ‘Yellowknife Road’ to Martian wet area

16.01.2013
Researchers have tracked a trail of minerals that point to the prior presence of water at the Curiosity rover site on Mars.

Instrument confirms presence of gypsum and related minerals


The Mars Science Laboratory's Curiosity Rover recently took this photo of the Martian landscape looking toward Mount Sharp while on its way toward Yellowknife Bay—an area where researchers have found minerals indicating the past presence of water. (NASA Photo)

Researchers from Los Alamos National Laboratory and the French Space Agency have tracked a trail of minerals that point to the prior presence of water at the Curiosity rover site on Mars.

Researchers from the Mars Science Laboratory’s ChemCam team today described how the laser instrument aboard the Curiosity Rover—an SUV-sized vehicle studying the surface of the Red Planet—has detected veins of gypsum running through an area known as Yellowknife Bay, located some 700 meters away from where the Curiosity Rover landed five months ago.

“These veins are composed mainly of hydrated calcium sulfate, such as bassinite or gypsum,” said ChemCam team member Nicolas Mangold, of the Laboratoire de Planétologie et Géodynamique de Nantes, in Nantes, France. “On Earth, forming veins like these requires water circulating in fractures.”

Gypsum and some related minerals can be formed when water reacts with other rocks and minerals. The presence of gypsum and its cousin, bassinite, along with physical evidence of alluvial flow patterns previously seen during the Mars Science Laboratory mission, could indicate that the Yellowknife Bay area once was home to ponds created by runoff or subsurface water that had percolated to the surface, said ChemCam team member Sam Clegg of Los Alamos National Laboratory.

Clegg and his colleagues first noticed the possibility of a gypsum signature weeks ago when ChemCam’s spectrometer recorded an increasing amount of calcium and a corresponding decrease in the silicon composition of a sample. Gypsum, a sedimentary rock, is made of calcium sulfate with bound water, while most of the rocks sampled so far on Mars are primarily composed of silicon. The change in composition indicated to the team that they were seeing something new in Martian geology.

The ChemCam instrument fires a powerful laser to vaporize rocks and then uses its spectrometer to analyze the samples. Because the laser can fire several pulses to sample rock situated below layers of surface dust, the ChemCam team was able to catch their first signs of calcium before anyone could actually see it. However, the instrument’s camera later was able to view the pale veins of mineral after the rock surface had been dusted off by laser blasts.

“Being able to see what we are sampling has been tremendously useful to the team and to the mission,” said ChemCam team leader Roger Wiens of Los Alamos National Laboratory.

As the rover moved down into Yellowknife Bay, ChemCam’s cameras as well as others aboard Curiosity have documented the increasing presence of light-colored veins of minerals that could be telltale signs that Mars was once a wet planet. Because water is a necessary ingredient of life as we know it here on Earth, the findings are exciting.

“Since the Mars Science Laboratory mission is focused on whether Mars is or was habitable, this new evidence of water on or below the planet’s surface is very exciting,” Wiens said. “We should be able to learn more about what we’re seeing once mission scientists can use Curiosity’s drill to sample some of these larger portions of material and analyze them using the CheMin instrument.”

Shifting to Earth Time and Bi-Continental Control Rooms

Meanwhile, members of the ChemCam team have shifted from Mars time to Earth time and a pair of control rooms while guiding ChemCam’s activities. Since November, the team has alternated operation of the instrument back and forth between control rooms in Toulouse, France, and Los Alamos, N.M. The arrangement allows the team to communicate back and forth, while sharing direct responsibility for the instrument between the Los Alamos and French team members. The arrangement provides synergy and allows for periods of hands-on activity and much needed rest.

“This arrangement has worked out very well and has allowed for all members of the ChemCam team to participate in the mission without working themselves too hard,” Wiens said.

ChemCam is a collaboration between research organizations within the United States and France. More than 45 scientists, students and other personnel are currently active in North America and Europe on the ChemCam team. A dozen scientists, engineers, and students are leading Los Alamos National Laboratory operations of ChemCam. The ChemCam system is one of 10 instruments mounted on the MSL mission’s Curiosity rover.
About Los Alamos National Laboratory

Los Alamos National Laboratory, a multidisciplinary research institution engaged in strategic science on behalf of national security, is operated by Los Alamos National Security, LLC, a team composed of Bechtel National, the University of California, The Babcock & Wilcox Company, and URS for the Department of Energy's National Nuclear Security Administration.

Los Alamos enhances national security by ensuring the safety and reliability of the U.S. nuclear stockpile, developing technologies to reduce threats from weapons of mass destruction, and solving problems related to energy, environment, infrastructure, health, and global security concerns.

James E. Rickman | EurekAlert!
Further information:
http://www.lanl.gov

More articles from Physics and Astronomy:

nachricht A matter-antimatter plasma
04.05.2015 | Max-Planck-Institut für Kernphysik

nachricht Volcano Loki Observed from Earth
04.05.2015 | Max-Planck-Institut für Radioastronomie

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Erosion, landslides and monsoon across the Himalaya

Scientists from Nepal, Switzerland and Germany was now able to show how erosion processes caused by the monsoon are mirrored in the sediment load of a river crossing the Himalaya.

In these days, it was again tragically demonstrated that the Himalayas are one of the most active geodynamic regions of the world. Landslides belong to the...

Im Focus: Through the galaxy by taxi - The Dream Chaser Space Utility Vehicle

A world-class prime systems integrator and electronic systems provider known for its rapid, innovative, and agile technology solutions, Sierra Nevada Corporation (SNC) is currently developing a new space transportation system called the Dream Chaser.

The ultimate aim is to construct a multi-mission-capable space utility vehicle, while accelerating the overall development process for this critical capability...

Im Focus: High-tech textiles – more than just clothes

Today, textiles are used for more than just clothes or bags – they are high tech materials for high-tech applications. High-tech textiles must fulfill a number of functions and meet many requirements. That is why the Fraunhofer Institute for Silicate Research ISC dedicated some major developing work to this most intriguing research area. The result can now be seen at Techtextil trade show in Frankfurt from 4 to 7 May. On display will be novel textile-integrated sensors, a unique multifunctional coating system for textiles and fibers, and textile processing of glass, carbon, and ceramics fibers to fiber preforms.

Thin materials and new kinds of sensors now make it possible to integrate silicone elastomer sensors in textiles. They are suitable for applications in medical...

Im Focus: Fast and Accurate 3-D Imaging Technique to Track Optically-Trapped Particles

KAIST researchers published an article on the development of a novel technique to precisely track the 3-D positions of optically-trapped particles having complicated geometry in high speed in the April 2015 issue of Optica.

Daejeon, Republic of Korea, April 23, 2015--Optical tweezers have been used as an invaluable tool for exerting micro-scale force on microscopic particles and...

Im Focus: NOAA, Tulane identify second possible specimen of 'pocket shark' ever found

Pocket sharks are among the world's rarest finds

A very small and rare species of shark is swimming its way through scientific literature. But don't worry, the chances of this inches-long vertebrate biting...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

HHL Energy Conference on May 11/12, 2015: Students Discuss about Decentralized Energy

23.04.2015 | Event News

“Developing our cities, preserving our planet”: Nobel Laureates gather for the first time in Asia

23.04.2015 | Event News

HHL's Entrepreneurship Conference on FinTech

13.04.2015 | Event News

 
Latest News

NIH-funded study points way forward for retinal disease gene therapy

04.05.2015 | Health and Medicine

ORNL researchers probe chemistry, topography and mechanics with one instrument

04.05.2015 | Life Sciences

A matter-antimatter plasma

04.05.2015 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>