Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

ChemCam follows the ‘Yellowknife Road’ to Martian wet area

16.01.2013
Researchers have tracked a trail of minerals that point to the prior presence of water at the Curiosity rover site on Mars.

Instrument confirms presence of gypsum and related minerals


The Mars Science Laboratory's Curiosity Rover recently took this photo of the Martian landscape looking toward Mount Sharp while on its way toward Yellowknife Bay—an area where researchers have found minerals indicating the past presence of water. (NASA Photo)

Researchers from Los Alamos National Laboratory and the French Space Agency have tracked a trail of minerals that point to the prior presence of water at the Curiosity rover site on Mars.

Researchers from the Mars Science Laboratory’s ChemCam team today described how the laser instrument aboard the Curiosity Rover—an SUV-sized vehicle studying the surface of the Red Planet—has detected veins of gypsum running through an area known as Yellowknife Bay, located some 700 meters away from where the Curiosity Rover landed five months ago.

“These veins are composed mainly of hydrated calcium sulfate, such as bassinite or gypsum,” said ChemCam team member Nicolas Mangold, of the Laboratoire de Planétologie et Géodynamique de Nantes, in Nantes, France. “On Earth, forming veins like these requires water circulating in fractures.”

Gypsum and some related minerals can be formed when water reacts with other rocks and minerals. The presence of gypsum and its cousin, bassinite, along with physical evidence of alluvial flow patterns previously seen during the Mars Science Laboratory mission, could indicate that the Yellowknife Bay area once was home to ponds created by runoff or subsurface water that had percolated to the surface, said ChemCam team member Sam Clegg of Los Alamos National Laboratory.

Clegg and his colleagues first noticed the possibility of a gypsum signature weeks ago when ChemCam’s spectrometer recorded an increasing amount of calcium and a corresponding decrease in the silicon composition of a sample. Gypsum, a sedimentary rock, is made of calcium sulfate with bound water, while most of the rocks sampled so far on Mars are primarily composed of silicon. The change in composition indicated to the team that they were seeing something new in Martian geology.

The ChemCam instrument fires a powerful laser to vaporize rocks and then uses its spectrometer to analyze the samples. Because the laser can fire several pulses to sample rock situated below layers of surface dust, the ChemCam team was able to catch their first signs of calcium before anyone could actually see it. However, the instrument’s camera later was able to view the pale veins of mineral after the rock surface had been dusted off by laser blasts.

“Being able to see what we are sampling has been tremendously useful to the team and to the mission,” said ChemCam team leader Roger Wiens of Los Alamos National Laboratory.

As the rover moved down into Yellowknife Bay, ChemCam’s cameras as well as others aboard Curiosity have documented the increasing presence of light-colored veins of minerals that could be telltale signs that Mars was once a wet planet. Because water is a necessary ingredient of life as we know it here on Earth, the findings are exciting.

“Since the Mars Science Laboratory mission is focused on whether Mars is or was habitable, this new evidence of water on or below the planet’s surface is very exciting,” Wiens said. “We should be able to learn more about what we’re seeing once mission scientists can use Curiosity’s drill to sample some of these larger portions of material and analyze them using the CheMin instrument.”

Shifting to Earth Time and Bi-Continental Control Rooms

Meanwhile, members of the ChemCam team have shifted from Mars time to Earth time and a pair of control rooms while guiding ChemCam’s activities. Since November, the team has alternated operation of the instrument back and forth between control rooms in Toulouse, France, and Los Alamos, N.M. The arrangement allows the team to communicate back and forth, while sharing direct responsibility for the instrument between the Los Alamos and French team members. The arrangement provides synergy and allows for periods of hands-on activity and much needed rest.

“This arrangement has worked out very well and has allowed for all members of the ChemCam team to participate in the mission without working themselves too hard,” Wiens said.

ChemCam is a collaboration between research organizations within the United States and France. More than 45 scientists, students and other personnel are currently active in North America and Europe on the ChemCam team. A dozen scientists, engineers, and students are leading Los Alamos National Laboratory operations of ChemCam. The ChemCam system is one of 10 instruments mounted on the MSL mission’s Curiosity rover.
About Los Alamos National Laboratory

Los Alamos National Laboratory, a multidisciplinary research institution engaged in strategic science on behalf of national security, is operated by Los Alamos National Security, LLC, a team composed of Bechtel National, the University of California, The Babcock & Wilcox Company, and URS for the Department of Energy's National Nuclear Security Administration.

Los Alamos enhances national security by ensuring the safety and reliability of the U.S. nuclear stockpile, developing technologies to reduce threats from weapons of mass destruction, and solving problems related to energy, environment, infrastructure, health, and global security concerns.

James E. Rickman | EurekAlert!
Further information:
http://www.lanl.gov

More articles from Physics and Astronomy:

nachricht From rocks in Colorado, evidence of a 'chaotic solar system'
23.02.2017 | University of Wisconsin-Madison

nachricht Prediction: More gas-giants will be found orbiting Sun-like stars
22.02.2017 | Carnegie Institution for Science

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>