Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Checking people at airports – with terahertz radiation

18.09.2008
PTB succeeds in absolute measurement of terahertz radiation

Within the last few years the number of transport checks – above all at airports – has been increased considerably. A worthwhile effort as, after all, it concerns the protection of passengers.

Possibilities for new and safe methods of checking people are offered by terahertz radiation. Before this radiation can be used for this purpose, however, it has to be measured quantitatively, so that damage to health caused by radiation can be ruled out. The exact measurement of this type of radiation has now been successfully undertaken by the Physikalisch-Technische Bundesanstalt (PTB), the German national metrology institute, for the first time.

Radiation in the THz range (with wavelengths from 30 µm to 3000 µm and frequencies from 0.1 THz to 10 THz) penetrates clothing and many other organic materials and furthermore offers spectroscopic information on safety-relevant materials such as explosives and pharmacological substances. The broad spectrum of the possible applications extends from security check to the investigation of the spatial and/or time structure of the electron packages in the storage rings for synchrotron radiation production and in free-electron lasers, for which the receivers of the German Electron Synchrotron DESY characterized here are used.

The complete information on the THz spectra can only be determined with detectors of known spectral responsivity. Up to now, the integral responsivity of the respective detectors and their spectral distribution are still largely unknown. The PTB has now for the first time determined the spectral responsivities of two THz detectors in the wavelength range from 50 µm to 600 µm with the aid of cavity radiators.

In order to make available spectral radiation fluxes in the THz range, calculable according to Planck's radiation law, the PTB uses two THz cavity radiators at different temperatures in connection with THz band and longwave-pass filters. The interior surfaces of the radiators are provided with a special coating which possesses a known and high emissivity also in the THz range and thus enables the calculability of the radiation incident on the detector. In order to obtain a sufficiently spectral purity of the THz radiation, a suppression of the infrared radiation of more than nine orders of magnitude is necessary.

By using an FT-IR spectrometer, the transmittance for all filter combinations used was accurately determined in the wavelength range from 0.8 µm to 1700 µm. Due to the calculable radiation of the cavity radiators and the known transmittance of the filters, it is possible to accurately determine the spectral radiation fluxes and thus determine the spectral absolute responsivities of THz receivers for the first time. Such absolutely characterized receivers will in future be utilized, e.g., both at the Metrology Light Source of the PTB to investigate the THz radiation produced there and in the investigation of the effect of THz radiation on the biological cell cycle.

PTB Contact:
Berndt Gutschwager,
E-Mail: berndt.gutschwager@ptb.de,
phone: +49 (30) 3481-7323

Imke Frischmuth | alfa
Further information:
http://www.ptb.de

More articles from Physics and Astronomy:

nachricht New NASA study improves search for habitable worlds
20.10.2017 | NASA/Goddard Space Flight Center

nachricht Physics boosts artificial intelligence methods
19.10.2017 | California Institute of Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>