Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cheap and efficient white light LEDs new design described in AIP's Journal of Applied Physics

09.04.2009
Roughly 20 percent of the electricity consumed worldwide is used to light homes, businesses, and other private and public spaces.

Though this consumption represents a large drain on resources, it also presents a tremendous opportunity for savings. Improving the efficiency of commercially available light bulbs -- even a little -- could translate into dramatically lower energy usage if implemented widely.

In the latest issue of Journal of Applied Physics, published by the American Institute of Physics (AIP), a group of scientists at the Chinese Academy of Sciences is reporting an important step towards that goal with their development of a new type of light emitting diode (LED) made from inexpensive, plastic like organic materials. Designed with a simplified "tandem" structure, it can produce twice as much light as a normal LED -- including the white light desired for home and office lighting.

"This work is important because it is the realization of rather high efficiency white emission by a tandem structure," says Dongge Ma (mdg1014@ciac.jl.cn), who led the research with his colleagues at the Changchun Institute of Applied Chemistry at the Chinese Academy of Sciences.

Found in everything from brake lights to computer displays, LEDs are more environmentally friendly and much more efficient than other types of light bulbs. Incandescent bulbs produce light by sending electricity through a thin metal filament that glows red hot. Only about five percent of the energy is turned into light, however. The rest is wasted as heat. Compact fluorescent bulbs, which send electricity through a gas inside a tube, tend to do much better. They typically turn 20 percent or more of the electricity pumped through them into light. But compact fluorescents also contain small amounts of mercury vapor, an environmental toxin.

LEDs on the other hand, are made from thin wafers of material flanked by electrodes. When an electric current is sent through the wafers, it liberates electrons from the atoms therein, leaving behind vacancies or "holes." When some of the wandering electrons and holes recombine, they create a parcel of light, or photon. These photons emerge from the side of the wafer as visible light. This turns 20 to 50 percent, or even more, of the input energy into light. LEDs also concentrate a lot of light in a small space.

Producing LEDs that can compete with traditional light bulbs for cost and efficiency is one thing. Making LEDs that consumers want to use to light their homes is quite another. One of the main barriers to the widespread use of LED lights is the light itself. LEDs can easily be manufactured to produce light of a single color -- like red -- with applications such as traffic lights and auto brake lights. Indoor lighting though, requires "natural" white light. This quality is measured by the color-rendering index (CRI), which assigns a value based on the light source's ability to reproduce the true color of the object being lit. For reading light, a CRI value of 70 or more is optimal. LEDs can produce white light by combining a mixture of blue, green, and red light, or by sending colored light through a filter or a thin layer of phosphors -- chemicals that glow with several colors when excited. However, these solutions increase costs. To reach a larger market, scientists would like to make inexpensive LEDs that can produce white light on their own.

The authors of this paper report important advances towards this goal. First, they built LEDs from organic, carbon-based materials, like plastic, rather than from more expensive semiconducting materials such as gallium, which also require more complicated manufacturing processes. Second, they demonstrated, for the first time, an organic white-light LED operating within only a single active layer, rather than several sophisticated layers. Moreover, by putting two of these single-layer LEDs together in a tandem unit, even higher efficiency is achieved. The authors report that their LED was able to achieve a CRI rating of nearly 70 -- almost good enough to read by. Progress in this area promises further reduction in the price of organic LEDs.

The work of Dongge Ma and colleagues was funded by the Hundreds Talents program of Chinese Academy of Sciences, the National Science Fund for Distinguished Young Scholars of China, the Foundation of Jilin Research Council, Foundation of Changchun Research Council, Science Fund for Creative Research Groups of NSFC, and the Ministry of Science and Technology of China.

The article "A high-performance tandem white organic LED combining highly effective white units and their interconnection layer" by Qi Wang et al. was published online on April 6, 2009 [J. Appl. Phys. 105, 076101 (2009)]. The article is available at http://link.aip.org/link/?JAPIAU/105/076101/1. Journalists can obtain a free copy of the article by emailing jbardi@aip.org.

ABOUT THE JOURNAL

Journal of Applied Physics, published by the American Institute of Physics (AIP), is an archival journal presenting significant new results in applied physics. The journal publishes original and review articles that emphasize understanding of the physics underlying modern technology. See: http://jap.aip.org/.

ABOUT AIP

The American Institute of Physics (AIP) is a not-for-profit membership corporation chartered in 1931 for the purpose of advancement and diffusion of the knowledge of physics and its application to human welfare. An umbrella organization for 10 Member Societies, AIP represents over 134,000 scientists, engineers and educators and is one of the world's largest publishers of physics journals. A total-solution provider of publishing services, AIP also publishes 12 journals of its own (many of which have the highest impact factors in their category), two magazines, and the AIP Conference Proceedings series. Its online publishing platform Scitation (registered trademark) hosts more than 1,000,000 articles from more than 175 scholarly journals, as well as conference proceedings, and other publications of 25 learned society publishers.

Jason Bardi | EurekAlert!
Further information:
http://www.aip.org

More articles from Physics and Astronomy:

nachricht Study offers new theoretical approach to describing non-equilibrium phase transitions
27.04.2017 | DOE/Argonne National Laboratory

nachricht SwRI-led team discovers lull in Mars' giant impact history
26.04.2017 | Southwest Research Institute

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>