Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Charge transport jamming in solar cells

24.09.2014

Polymer researchers from Mainz decipher the working mechanism of novel perovskite solar cells.

Researchers from the Max Planck Institute for Polymer Research in Mainz, jointly with scientists from Switzerland and Spain, have investigated the working mechanism of a new type of solar cells in which an organic-inorganic perovskite compound forms the light-absorbing layer. These cells can be produced in an inexpensive way with the simplest means.


Schematic of the working principle of a perovskite solar cell.

S. Weber


Measuring a solar cell: Rüdiger Berger (left) and Stefan Weber (right).

Photo: N. Bouvier

In comparison, the conventional silicon solar cells are energy-intensive and expensive to manufacture. Using Kelvin probe microscopy, the team of Mainz researchers around Rüdiger Berger and Stefan Weber observed the charge transport inside an illuminated solar cell. They found out that the positively charged carriers accumulated in a particular region in the solar cell.

This phenomenon could be compared to a bottleneck on a freeway: should many cars – or charge carriers in our case – want to pass the bottleneck at the same time, the traffic will inevitably slow down or come to a halt. According to these findings, the perovskite solar cells could soon achieve efficiencies comparable to those of commercial solar cells. Their results are published in the scientific journal “Nature Communications”.

The perovskite solar cells produced in a laboratory directed by the Swiss scientist Michael Grätzel contain a layer of an organic-inorganic compound which crystallizes in the cubic perovskite structure. "These structures absorb light very well", says Rüdiger Berger explaining the working mechanism of these solar cells.

"The light absorbed by the perovskite layer snatches an electron from an atom creating a positively charged electron vacancy - also known as "hole". Now the electrons just have to be brought to the electrode on the one side of the cell and the holes to the other side. That’s all we need for a working solar cell!" In the solar cell, the perovskite film therefore rests on a nanostructured layer of titanium dioxide that collects the electrons generated upon exposure to light and conducts them to the lower electrode.

The holes are conducted to the upper electrode by a layer of the organic hole conductor material spiro-OMeTAD situated on top of the perovskite film. "The many different layers in the solar cell are extremely important. They ensure an efficient sorting between the two charge carrier types" adds Berger's colleague Stefan Weber. "However, the charge carriers have to overcome a small barrier every time they jump from one material to the other. These barriers act like a construction site on a busy freeway where the vehicles clog. This charge transport jamming in the solar cell leads to losses and thus to a lower efficiency".

In order to observe the charge transport within the solar cell, the Mainz researchers have split the cell in two halves. They then polished the cross section with a finely focused ion beam. With the fine tip of a scanning force microscope, they were able to image the structure of the layer down to a resolution of a few nanometers. In addition, Kelvin probe microscopy was contemporaneously used to measure the local electrical potential underneath the tip. From the potential distribution, the researchers were then able to derive the field distribution and thus the charge transport occurring through the various layers of the cell.

In several measurement series, the researchers found that a strong accumulation of positive charges takes place in the perovskite layer upon exposure to light. They suppose that titanium dioxide, the electron conductor, does its job much more efficiently than the hole conductor. In other words, the holes do not reach their electrode as fast as the electrons do; they accumulate along the way. The excess of positive charges in the perovskite layer results in the creation of a reversed electric field which also contributes to the slow down of the hole transport.

“We could for the first time correlate the charge distribution with the individual material layers in the cell”, says Rüdiger Berger. "The charge transport jamming of positive charges in the illuminated perovskite layer tells us that the transport through the hole conductor currently constitutes the bottleneck for the efficiency of the solar cell". The observations of the Mainz researchers can help to increase the efficiency of the perovskite solar cells over the 20% mark and thus offer a genuine alternative to the conventional silicon solar cells.

Weitere Informationen:

http://www.mpip-mainz.mpg.de/4055851/PM9_14en - press release and original publication
http://www.mpip-mainz.mpg.de/home/en - Max Planck Institute for Polymer Research

Natacha Bouvier | Max-Planck-Institut

More articles from Physics and Astronomy:

nachricht Further Improvement of Qubit Lifetime for Quantum Computers
09.12.2016 | Forschungszentrum Jülich

nachricht Electron highway inside crystal
09.12.2016 | Julius-Maximilians-Universität Würzburg

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>