Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Charge separation in a molecule consisting of two identical atoms

25.11.2011
Size matters

Physicists from the University of Stuttgart show the first experimental proof of a molecule consisting of two identical atoms that exhibits a permanent electric dipole moment. This observation contradicts the classical opinion described in many physics and chemistry textbooks. The work was published in the renowned journal Science*).


Size matters
University of Stuttgart

A dipolar molecule forms as a result of a charge separation between the negative charged electron cloud and the positive core, creating a permanent electric dipole moment. Usually this charge separation originates in different attraction of the cores of different elements onto the negative charged electrons. Due to symmetry reasons homonuclear molecules, consisting only of atoms of the same element, therefore could not possess dipole moments.

However, the dipolar molecules that were discovered by the group of Prof. Tilman Pfau at the 5th Institute of Physics at the University of Stuttgart do consist of two atoms of the element rubidium. The necessary asymmetry arises as a result of different electronically excited states of the two alike atoms. Generally this excitation will be exchanged between the atoms and the asymmetry will be lifted. Here this exchange is suppressed by the huge size of the molecule, which is about 1000 times larger than an oxygen molecule and reaches sizes of viruses. Therefore the probability to exchange the excitation between the two atoms is so small that it would statistically only happen once in the lifetime of the universe. Consequently, these homonuclear molecules possess a dipole moment. A permanent dipole moment additionally requires an orientation of the molecular axis. Due to their size the molecules rotate so slowly that the dipole moment does not average out from the viewpoint of an observer.

Physicists from the University of Stuttgart succeeded in experimentally detecting the dipole moment. They measured the energy shift of the molecule in an electric field by laser spectroscopy in an ultra cold atomic cloud. The same group caused worldwide a stir when they created these weakly bound Rydberg molecules for the first time in 2009. The molecules consist of two identical atoms whereof one is excited to a highly excited state, a so-called Rydberg state. The unusual binding mechanism relies on scattering of the highly excited Rydberg electron of the second atom. So far theoretical descriptions of this binding mechanism did not predict a dipole moment. However, the scattering of the Rydberg electron of the bound atom changes the probability distribution of the electron. This breaks the otherwise spherical symmetry and creates a dipole moment. In collaboration with theoretical physicists from the Max-Plank-Institute for the Physics of Complex Systems in Dresden and from the Harvard-Smithonian Center for Astrophysics in Cambridge, USA, a new theoretical treatment was developed that confirms the observation of a dipole moment.

The proof of a permanent dipole moment in a homonuclear molecule not only improves the understanding of polar molecules. Ultra cold polar molecules are also promising to study and control chemical reactions of single molecules.

Contact:
Johannes Nipper, 5th Institute of Physics, phone: +49 (0)711/685-64977, e-mail: j.nipper@physik.uni-stuttgart.de

W. Li, T. Pohl, J. M. Rost, Seth T. Rittenhouse, H. R. Sadeghpour, J. Nipper, B. Butscher, J. B. Balewski, V. Bendkowsky, R. Löw, T. Pfau: A Homonuclear Molecule with a Permanent Electric Dipole Moment. Science 25 November 2011, 334 (6059): 1110-1114. DOI: 10.1126/science.1211255 http://www.sciencemag.org/content/334/6059/1110.full.pdf

Andrea Mayer-Grenu | idw
Further information:
http://www.uni-stuttgart.de
http://www.sciencemag.org/content/334/6059/1110.full.pdf

More articles from Physics and Astronomy:

nachricht From rocks in Colorado, evidence of a 'chaotic solar system'
23.02.2017 | University of Wisconsin-Madison

nachricht Prediction: More gas-giants will be found orbiting Sun-like stars
22.02.2017 | Carnegie Institution for Science

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>