Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Charge it: Neutral atoms made to act like electrically charged particles

01.04.2011
Completing the story they started by creating synthetic magnetic fields,* scientists from the Joint Quantum Institute (JQI), a collaboration of the National Institute of Standards and Technology (NIST) and the University of Maryland, have now made atoms act as if they were charged particles accelerated by electric fields.

Reported in the journal Nature Physics,** these synthetic electric fields make each atom in a gas act, individually, as if it were a charged particle, but collectively they remain neutral, uncharged particles. This dual personality will help researchers simulate and study fundamental electrical phenomena and may lead to a deeper understanding of exotic phenomena involving charged particles such as superconductivity, the flow of electricity without resistance, or the quantum Hall effect, used by NIST to create a standard of electrical resistance.

Some aspects of electricity are difficult to study because, although oppositely charged particles are attracted to one another, similarly charged particles are repelled by one another. To get around this, NIST physicist Ian Spielman and his colleagues realized that they could make atoms, which are typically electrically neutral, act as if they are charged particles in an electric field—extending their earlier method for making neutral atoms act like charged particles in a magnetic field.

The researchers create their synthetic electric field in an ultracold gas of several hundred thousand rubidium atoms. Using lasers, the team alters the atoms' energy-momentum relationship. This had the effect of transferring a bit of the lasers' momentum to the atoms, causing them to move. The force on each atom is physically identical—and mathematically equivalent—to what a charged particle would feel in an electric field.

So while the neutral atoms each experience the force of this synthetic electric field individually, they do not repel each other as would true charged particles in an ordinary electric field. This is analogous to an experienced group of dancers all following the moves of their instructor without getting in each other's way.

According to Spielman, this work may enable scientists to study the Hall effect, a phenomenon where an electromagnetic field can cause charged particles traveling through a conductor to experience a sideways force, which has of yet been unobserved in cold-atom systems. The work may also facilitate measurements of the atomic equivalents of electrical quantities such as resistance and inductance. For neutral atoms in synthetic electric fields, inductance is a measure of the energy that is stored as a result of the atoms' motion, and resistance is a measure of the dissipation, or energy loss, in the system. Measuring these quantities could provide insights into the properties of charged particles in analogous systems, including superconductors.

* See "JQI Researchers Create 'Synthetic Magnetic Fields' for Neutral Atoms," Dec. 15, 2009, at www.nist.gov/pml/div684/synthetic_121509.cfm.

** Y-J. Lin, R. L. Compton, K. Jiménez-García, W. D. Phillips, J. V. Porto and I. B. Spielman, A synthetic electric force acting on neutral atoms, Nature Physics. Published online March 20, 2011.

Mark Esser | EurekAlert!
Further information:
http://www.nist.gov

More articles from Physics and Astronomy:

nachricht Climate cycles may explain how running water carved Mars' surface features
02.12.2016 | Penn State

nachricht What do Netflix, Google and planetary systems have in common?
02.12.2016 | University of Toronto

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>